
Interferences. Methylene chloride
or chloroform-soluble carboxylic acids
(acetylsalicylic acid, salicylic acid,
etc.) which inhibited 4-AAP response
were readily extracted from these
phases using 0.1 Ar sodium hydroxide.

Span-type excipients, which gave a

slight response to the 4-AAP reagent,
were eliminated by virtue of their insol-
ubility in 10% aqueous sodium chloride;
while interfering Tween-type excipients
were precipitated (8) using the Tween
reagent. Propylene glycol, when formu-
lated at a level of 5.25%, contributed ca.
2 to 3% to the observed absorbance.
This was minimized by a more favorable
distribution of the interference within
the aqueous phases used in the pro-
cedure.

Placebo analyses indicated that no

interference was obtained with such
common excipients as stearic acid,
stearyl alcohol, cetyl alcohol, petrola-
tum, methyl or propyl-p-hydroxy-
benzoates, sesame oil, or thimerosal.
Lipotropic agents (betaine or choline),
all the common vitamins, and neomycin
sulfate failed to interfere.

Scope of Reaction. In addition to
the other types of steroids reported
to react with the 4-AAP reagent, the
following steroids reacted at elevated
temperature (boiling point of methanol)
and at increased concentration (2.0 mg.
per 10.0 ml. of reagent): 2«-hydroxy-
methyl - 17/3 - hydroxy - 17  - methyl-
5a-androst-3-one (306   µ); and 2a-
hydroxymethyl - 17/3 - hydroxy - 5a-
androst-3-one (306   µ). Steroids with-
out a keto group failed to give any

response. The quantitative aspects of
the above responses to the 4-AAP
reagent were not investigated.

Correlations of Chromophore Wave-
length with Structure. The additive
effect of various ring A and B sub-
stituents on the chromophore of the
parent saturated-3-keto steroid is
presented in Table II.
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Smoothing and Differentiation of Data
by Simplified Least Squares Procedures
ABRAHAM SAVITZKY and MARCEL J. E.

The Perkin-Elmer Corp., Norwalk, Conn.

  In attempting to analyze, on

digital computers, data from basically
continuous physical experiments,
numerical methods of performing fa-
miliar operations must be developed.
The operations of differentiation and
filtering are especially important both
as an end in themselves, and as a pre-
lude to further treatment of the data.
Numerical counterparts of analog de-
vices that perform these operations,
such as RC filters, are often considered.
However, the method of least squares
may be used without additional com-

putational complexity and with con-
siderable improvement in the informa-
tion obtained. The least squares cal-
culations may be carried out in the
computer by convolution of the data
points with properly chosen sets of
integers. These sets of integers and
their normalizing factors are described
and their use is illustrated in spectro-
scopic applications. The computer
programs required are relatively sim-
ple. Two examples are presented as

subroutines in the FORTRAN language.

The
primary output of any experi-

ment in which quantitative
information is to be extracted is infor-
mation which measures the phenomenon
under observation. Superimposed upon
and indistinguishable from this informa-
tion are random errors which, regardless
of their source, are characteristically
described as noise. Of fundamental
importance to the experimenter is the
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removal of as much of this noise as

possible without, at the same time,
unduly degrading the underlying in-
formation.

In much experimental work, the infor-
mation may be obtained in the form of
a two-column table of numbers, A vs. B.
Such a table is typically the result of
digitizing a spectrum or digitizing other
kinds of results obtained during the
course of an experiment. If plotted,
this table of numbers would give the
familiar graphs of %T vs. wavelength,
pH vs. volume of titrant, polarographic
current vs. applied voltage, NMR or
ESR spectrum, or chromatographic
elution curve, etc. This paper is con-
cerned with computational methods for
the removal of the random noise from
such information, and with the simple
evaluation of the first few derivatives
of the information with respect to the
graph abscissa.

The bases for the methods to be dis-
cussed have been reported previously,
mostly in the mathematical literature
(4, 6, 8, 9). The objective here is to
present specific methods for handling
current problems in the processing of
such tables of analytical data. The
methods apply as well to the desk
calculator, or to simple paper and pencil
operations for small amounts of data, as
they do to the digital computer for
large amounts of data, since their major
utility is to simplify and speed up the
processing of data.

There are two important restrictions
on the way in which the points in the

table may be obtained. First, the points
must be at a fixed, uniform interval in
the chosen abscissa. If the independent
variable is time, as in chromatography
or NMR spectra with linear time sweep,
each data point must be obtained at the
same time interval from each preceding
point. If it is a spectrum, the intervals
may be every drum division or every
0.1 wavenumber, etc. Second, the
curves formed by graphing the points
must be continuous and more or less
smooth—as in the various examples
listed above.

ALTERNATIVE METHODS

One of the simplest ways to smooth
fluctuating data is by a moving average.
In this procedure one takes a fixed
number of points, adds their ordinates
together, and divides by the number of
points to obtain the average ordinate at
the center abscissa of the group. Next,
the point at one end of the group is
dropped, the next point at the other end
added, and the process is repeated.

Figure 1 illustrates how the moving
average might be obtained. While
there is a much simpler way to compute
the moving average than the particular
one described, the following description
is correct and can be extended to more

sophisticated methods as will be seen

shortly. This description is based on
the concept of a convolute and of a
convolution function. The set of
numbers at the right are the data or
ordinate values, those at the left, the
abscissa information. The outlined
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Figure 1. Convolution operation
Abscissa points at left, tabular data at right.
In box area the convolution integers, C{. Opera-
tion is the multiplication of the data points by the
corresponding C¿, summation of the resulting
products, and division by a normalizer, resulting
in a single convolute at the point Xq. The box
is then moved down one line, and the process
repeated

block in the center may be considered
to be a separate piece of paper on which
are written a new set of abscissa
numbers, ranging from — 2 thru zero to
+ 2. The C’s at the right represent the
convoluting integers. For the moving
average each C is numerically equal to
one. To perform a convolution of the
ordinate numbers in the table of data
with a set of convoluting integers, C»,
each number in the block is multiplied
by the corresponding number in the
table of data, the resulting products are
added and this sum is divided by five.
The set of ones is the convoluting
function, and the number by which we

divide, in this case, 5, is the normalizing
factor. To get the next point in the
moving average, the center block is slid
down one line and the process repeated.

The concept of convolution can be
generalized beyond the simple moving
average. In the general case the C’s
represent any set of convoluting
integers. There is an associated
normalizing or scaling factor. The pro-
cedure is to multiply C_2 times the
number opposite it, then C_i by its
number, etc., sum the results, divide by
the normalizing factor, if appropriate,
and the result is the desired function
evaluated at the point indicated by
Co· For the next point, we move the set
of convoluting integers down and repeat,
etc. The mathematical description of
this process is:

  C<Y»<
v * —

* ~ m_
™

N

The index j represents the running
index of the ordinate data in the original
data table.

For the moving average, each C¡ is
equal to one and N is the number of
convoluting integers. However, for
many types of data the set of all l’s,
which yields the average, is not
particularly useful. For example, on

going through a sharp peak, the average
would tend to degrade the end of the
peak. There are other types of smooth-
ing functions which might be used, and
a few of these are indicated in Figure 2.

Figure 2A illustrates the set where all
values have the same weight over the
interval—essentially the moving
average.

The function in Figure 2B is an

exponential set which simulates the
familiar RC analog time constant—
i.e., the most recent point is given the
greatest weight, and each preceding
point gets a lesser weight determined by
the law of exponential decay. Future
points have no influence. Such a

function treats future and past points
differently and so will obviously intro-
duce a unidirectional distortion into the
numerical results, as does the RC
filter in an actual instrument.

When dealing with sets of numbers in
hand, and not an actual run on an
instrument where the data is emerging
in serial order, it is possible to look
ahead as well as behind. Then we can
convolute with a function that treats
past and future on an equal basis, such
as the function in Figure 2D. Here the
most weight is given to the central
point, and points on either side of the
center are symmetrically weighed
exponentially. This function acts like
an idealized lead-lag network, which is
not practical to make with resistors,
capacitors, and so on.

The usual spectrum from a spectro-
photometer is the resultant of two con-
volutions of the actual spectrum of the
material, first with a function represent-
ing the slit function of the instrument,
which is much like the triangular con-
volute shown in Figure 2C, and then this
first convolute spectrum is further
convoluted with a function representing
the time constant of the instrument.
The triangular convoluting function
could in many cases yield results not
significantly different from the sym-
metrical exponential function.

Figure 3 illustrates the way in which
each of these functions would act on a

typical set of spectroscopic data. Curve
3A is replotted directly from the instru-
mental data. It is a single sharp band
recorded under conditions which yield a

reasonable noise level. The isolated
point just to the right of the band has
the value of 666 on the scale of zero to
1000 corresponding to approximately 0
to 100% transmittance. This point is
introduced to illustrate the effect on
these operations of a single point which
has a gross error. The numbers along
the bottom are the digital value at the

A
X

 

K
X

J\K...
Xe

c

X»
D

Figure 2. Various convolute functions

A. Moving average. 8. Exponential func-
tion. C. Symmetrical triangular function, rep-
resenting idealized spectrometer slit function.
D. Symmetrical exponential function

lowest point of the plot, and one may
consider that the peak goes down to
34.2% transmittance. The base line at
the top is at about 79%.

Curve 3B is a nine-point moving
average of the data. As expected, the
peak is considerably shortened by this
process. Especially interesting is the
step introduced by the isolated error.
In effect, it has the shape of the boxlike
convolute in Figure 2A, which is exactly
what one would expect from the con-

voluting process (3).
Curve 3C is for a triangular function

which obviously forces both the peak it-
self and the isolated error into a

triangular mold.
Curve 3D is the result of convoluting

with the numerical equivalent of a

conventional RC exponential time con-
stant filter using only five points. The
peak is not only shortened, but is also
shifted to the right by one data point,
or 0.002 micron and the isolated data
point is asymmetric in the same manner.
The convolution with a symmetrical
lead-lag exponential, as in Figure 3E,
does not distort the peak but does still
reduce its intensity.

Note that while all of these functions
have had the desired effect of reducing
the noise level, they are clearly unde-
sirable because of the accompanying
degradation of the peak intensity.

METHOD OF LEAST SQUARES

The convoluting functions discussed
so far are rather simple and do not
extract as much information as is pos-
sible. The experimenter, if presented
with a plot of the data points, would
tend to draw through these points a line

'

which best fits them. Numerically,
this can also be done, provided one can

adequately define what is meant by
best fit. The most common criterion is
that of least squares which may be

simply stated as follows:
A set of points is to be fitted to some

curve—for example, the curve a3z3 +
o2z2 + aix + Oo = y. The o’s are to be
selected such that when each abscissa
point is substituted into this equation,
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368 356 342

Figure 3. Spectral band convoluted
by the various 9 point functions

The number at the bottom of each peak refers
to the lowest recorded point, and is a measure

of the ability to retain the shape of the peak.
A. Raw data with single isolated error point.
B. Moving average. C. Triangular func-
tion. D. Normal exponential function. E.

Symmetrical exponential function. F. Least
squares smoothing function

the square of the differences between
the computed numbers, y, and the
observed numbers is a minimum for the
total of the observations used in deter-
mining the coefficients. All of the
error is assumed to be in the ordinate
and none in the abscissa.

Consider the block of seven data
points enclosed by the left bracket in
Figure 4. If these fall along a curve

that can be described approximately by
the equation shown, then there are

specific procedures—which are described
in most books on numerical analysis—
to find the o’s. One then substitutes
back into the resulting equation the
abscissa at the central point indicated
by the circle. The value which is
obtained by this procedure is the best
value at that point based on the least
squares criterion, on the function which
was chosen, and on the group of points
examined.

This procedure can be repeated for

Figure 4. Representation of a 7-point
moving polynomial smooth

each group of seven points, dropping one
at the left and picking up one at the
right each time. A somewhat later
block is indicated at the right. In the
usual case, there is found a different set
of coefficients for each group of seven

points. Even with a high-speed com-

puter this is a tedious proposition at
best.

Note, however, that finding the a

coefficients is required only as a means
for determining the final best value at
just one point, the central point of the
set. A careful study of the least squares
procedure using these constraints, leads
to the derivation of a set of integers
which provide a weighting function.
With this set of integers the central
point can be evaluated by the con-

voluting procedure discussed above.
This procedure is exactly equivalent to
the least squares. It is not approximate.

The derivation is presented in
Appendix I. For either a cubic or a

quadratic function, the set of integers
is the same, and the set for up to 25
points is shown in Table I of Appendix
II with the appropriate normalizing
factors. A most instructive exercise is
to tabulate a simple function such as

y = x3 over any interval, apply these
smoothing convolutes and compare
these new' values with the original.
The answers will be found to be exact.

In Figure 3F this least squares con-

voluting procedure has been applied to
the data of Figure 3A, using a 9-point
cubic convolute. The value at the peak
and the shape of the peak are es-

sentially undistorted. As always, the
isolated point assumes the shape of the
convoluting function. The FORTRAN
language computer program for per-
forming this operation is presented in
Program I of Appendix III.

Going beyond simple curve fitting,
one can find in the literature on numeri-
cal analysis a variety of least squares
procedures for determining the first de-
rivative. These procedures are usually
based on interpolation formulas and are

for data at any arbitrary interval.
Again, if we restrict ourselves to evaluat-
ing the function only at the center point
of a set of equally spaced observations,
then there exist sets of convoluting
integers for the first derivative as well.
(These actually evaluate the derivative
of the least squares best function.)

A complete set of tables for
derivatives up to the fifth order for
polynomials up to the fifth degree, using
from 5 to 25 points, is presented in
Appendix II. These are more than
adequate for most work, since, if the
points are taken sufficiently close to-
gether, then practically any smooth
curve will look more or less like a

quadratic in the vicinity of a peak, or

like a cubic in the vicinity of a shoulder.
More complete tables can be found in
the statistical literature (£, 4, 6, 9).

SMOOT}· ING-Cubk odratic
'

y’-cubi.

•

y"-<*ibt< y^C uble

Figure 5. 9-Point convoluting functions
(orthogonal polynomial) for smoothing
and first, second, and third derivative

Program II of Appendix III shows the
use of these tables to obtain the coef-
ficients of a polynomial for finding the
precise center of an infrared band.

The shapes of the 9-point con-
volutes for a few of the functions are
illustrated in Figure 5. Of special
interest is the linear relation of the first
derivative convolute for a quadratic.
This is quite unique operationally be-
cause in processing a table of data, only
one multiplication is necessary for each
convolution. The remainder of the
points are found from the set calculated
for the previous point by simple subtrac-
tion. In Figure 6B is shown the first
derivative of the spectrum in Figure 6A,
obtained using a 9-point convolute.

The derivatives are useful in cases
such as our methods of band finding on
a computer (7), in studies of derivative
spectra, in derivative thermogravimet-
ric analysis, derivative polarography,
etc.

CONCLUSIONS

With the increase in the application of
computers to the analysis of digitized
data, the convolution methods described
are certain to gain wider usage. With
these methods, the sole function of the
computer is to act as a filter to smooth
the noise fluctuations and hopefully to
introduce no distortions into the re-
corded data (S).

This problem of distortion is difficult
to assess. In any of the curves of Figure
3, there remain small fluctuations in the

Figure 6. 1 7-Point first derivative con-
volute
A. Original spectrum. 6. First derivative
spectrum.
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Figure 7. Square root relation be-
tween number of points and degree of
smoothing
A. Raw data. 6. 5-Point smooth. C. 9-
Point smooth. D. 1 7-Point smooth

data. Are these fluctuations real, or, as
is more likely, are they just a low
frequency component of the noise level
which could not be smoothed? The
question cannot be answered by taking
just the data from a single run. How-
ever, if one were to take more than one

run, average these and then smooth, or
smooth and then average, the computer-
plus-instrument system could decide,
since even low frequency noise will not
recur in exactly the same place in
different runs. Computer time is most
efficiently used if the averaging is done
prior to smoothing.

Recent work (1) has shown the utility
of simple averaging of a large number of
runs in the enhancement of signa-to-
noise ratios. The use of combined
smoothing and averaging can con-

siderably reduce the instrument time
required, throwing the burden onto the
computer which operates in a wholly
different time domain. A character-
istic of both procedures is that the noise
is reduced approximately as the square
root of the number of points used. This
is illustrated for the smoothing case by
Figure 7. At the upper left is the raw

data, at the upper right a 5-point
smooth, lower left 9 points, and lower
right 17 points. If it is desired to
improve the signal-to- noise ratio by a

factor of 10, simple averaging would
require a total of 100 runs. Similar
improvement could be achieved by
making only 16 runs plus a 9-point
least squares smooth (average of 16
runs = 4 X improvement, and 9-point
smooth ^ 3 X improvement) or only
4 runs plus a 25-point smooth (average
of 4 runs = 2 X improvement plus 25-
point smooth ^ 5 X improvement).
The distribution between the number
of runs required and the number of
points which may be used for the
smoothing is a function of the experi-
mental curve under examination. The
minimum distortion will occur when the
polynomial accurately describes the

analytical data, and will deviate as the
polynomial departs from the true curve.
The best results are obtained when the
data are digitized at high densities—
i.e., points very close together—and the
number of points used in the convolute
is chosen to be small enough so that no
more than one inflection in the observed
data is included in any convolution
interval. Our results should be com-

pared with those achievable using con-
ventional instrument filtering. In a

sense, we are substituting idealized
filters and filter-networks for electronic
hardware such as resistors, condensers,
servos, etc. If one examines the time
relationships, it probably takes longer
to get the information using the digitizer
and then the computer than with the
analogous electronic network. There is,
very definitely, the advantage in the
computer of being able to vary the proc-
essing completely unfettered by the
practical restriction of real circuitry and
servo loops. Note too, that this proc-
essing can be done after the fact of data
collection, and indeed several different
procedures may be applied in order to
assess the optimum. This is a real
advantage in itself, and provides ample
justification for use of the computer
solely as a noise filter. However, the
greatest utility of these methods comes
in the pretreatment of data to be
further processed, as in our bandfinding
procedures, in any curvefitting opera-
tions, in quantitative analyses, etc.

This type of data processing, so far as

computers are concerned, requires a

relatively small amount of programming
and relatively little use of the computer
memory or of the computer’s processing
capability. Therefore, even accounting-
type computers, such as the IBM 1401
can be used to process data in this way.
Furthermore, on such computers there
is generally a high-speed line printer
which can be turned into a relatively
crude point plotter. On each line an X
can be placed at the appropriate
position to 1% of value, and the actual
value is printed at the edge of the paper.
The rate can be on the order of 10 lines,
or points, per second.
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APPENDIX I

The general problem is formulated as

follows:
A set of 2m + 1 consecutive values

are to be used in the determination of

the best mean square fit through these
values of a polynomial of degree n

( n less than 2m + 1). This polynomial
is of the form(:

Si = ¿ 5V = I
k = 0

bno bni1 bn2i2 -f~ . . . . + bnnin la

The derivatives of this polynomial are:

-J7
= bnl + 2bnii + 36„si2 + . . .

at

+   „„ ”-1 lb
¿Pf.

~ 2    + 3 X 2b„¡i + . . .

+ (  — 1 )nbnnin~2 Ic

tinf
-J.· = n\b„n Id
di

Note that, in the coordinate system
being considered, the value of i ranges
from -m to +m, and that i = 0 at
the central point of the set of 2m +1
values. Hence, the value of the sth
derivative at that point is given by:

where

7·, ) — slbns dns
.

dv /i-o
II

fo bn o
— dnO Ha

dfo
_

,

 ,
. Onl —

di
lib

d2fo 07
~j7^

" ¿0n2 — dn2 lie

The least squares criterion requires that
the sum of the squares of the differences
between the observed values, y,, and
the calculated, /,-, be a minimum over

the interval being considered.

d_
dbnk   v· - = 0 III

Minimizing with respect to b„o, we have

d

dbn0
bn 0 + bnii +

+ (finni Ilia

2 (bno + b„ll + .    

+ bnni" — yd = 0

and with respect to b,.i, we have

vf—   (bn 0 + bnii
dbni |_

bnnin - yd = 2 ^ (b„ 0 + bnii +

+ bnJn — yd i = 0 IHb
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and with respect to the general bt

obtain
we

2   bnki
k = 0

- Vi   = 0

IIIc
or

i = m k = n i· m

^3   6"t,:l!+r =   +ir IVa
í — — m k = 0 t — — m

Where r is the index representing the
equation number which runs from 0 to
n (there are   + 1 equations). The
summation indexes on the left side may
be interchanged—i.e.,
i — m k=n k — n i = m

    bndí+r =     bnhi>‘+r
is -m í¡*0 k = 0 i — —m

IVb

and finally, since b„k is independent of i,
k — n i = m i — m

  bak   ik+r =   y*' =

/c = 0 i = — m i = — m

Va

or

53 bnhsr+k = vb
k = 0

where

s,+í = 53 vc

and

F*=   Vd

Note that Sr+k = 0 for odd values of
r + k. Sine e Sr+k exists for even
values of r + k only, the set of   + 1

equations can t >e separated into two sets,
one for even ví dues of k and one for odd
values. Thus , for a 5th degree poly-
nomial, where   = 5

Sohso + i J2&52 + S4654 = Fa

Sabio + : Sibn + S6&54 = F2 Via

¿>4650 + Saba + Saha — Fi
which can b e used to solve for 650, bn,
and 654, whi le:

S2651 + S4653 + Sabn = Fi

Sibn -+   Saha + Sahi = Fa VIb

Sabn d - Sabia + .S’10655 = Fi

650, bn — bn, and b44 — 654 while the
set VIb has the same form for n = 6, so
that bn = bn, b53 = 653, and  55 = bsi·
In other words, bn, = bn+ilS for n and s

both even or for n and s both odd. For
example, to determine the third deriva-
tive for the best fit to a curve of third
(or fourth) order, we would have:

Sabn + S4633 = F1

S4631 + Sabaa = Fa

c u · u 1 S2F3 — SiFifrom which bss = 5-5-yv

When, for instance, m = 4 (2m +1 = 9
points), we have from Vc that

S2 = 60, Si = 708, Sa = 9780

and

60FS - 708Fi Fa - 7Fi
33 -

60 (9780) - (708)2
~

7128

which reduces to:

— 14^-4 + 7y-3 + 13y-2 + 9^-i + Oyo — 9yi — 13y2 — 3 ys + 14 y*

1188

which caí 1 be used to solve for bn, baa,
and  65.

' The set of equations in Via has
the same : form for   = 4, so that 640 =

The coefficients of y¡ constitute the
convoluting integers (Table VIII) for
the third derivative of a cubic poly-

TA8LE I

CDNVOLUTES SMOOTHING QUADRATIC CUBIC A20 A30

POINTS 25 23 21 19 17 15 13 11 9 7 5

-12 -253
-11 -138 -42
-10 -33 -21 -171
-09 62 -2 -76, -136
-08 147 15 c> -51 -21
-07 222 30 8' \ 24 -6 -78
-06 287 43 14 9 89 7 -13 -11
-05 322 54 20 4 144 18 42 0 -36
-04 387 63 24 9 189 27 87 9 9 -21
-03 422 70 2 8 4 224 34 122 16 44 14 -2
-02 447 75 309 249 39 147 21 69 39 3 -3
-01 462 78 32 !4 264 42 162 24 84 54 6 12

00 46 7 79 32 >9 269 43 167 25 89 59 7 17
01 462. 78 3¡? 4 264 42 162 24 84 54 6 12
02 447 75 3< 09 249 39 147 21 69 39 3 -3
03 422 70 2 84 224 34 122 16 44 14 -2
04 387 63 2 49 189 27 87 9 9 -21
05 322 54 2:04 144 18 42 0 -36
06 287 43 1.49 89 7 -13 -11
07 222 30 84 24 -6 -78
08 147 15 9 -51 -21
09 62 -2 -76 -136
10 -33 -21 - 171
11 -138 -42
12 -253

NORM 5175 8059 13059 2261 323 1105 143 429 231 21 35
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TABLE 11

CONVOLUTES SMOOTHING OUARTIC QUINTIC A40 A50

POINTS 25 23 21 19 17 15 13 11 9 7 5

-12 1265
-11 -345 285
-10 -1122 -114 11628
-09 -1255 -285 -6460 340
-08 -915 -285 -13005 -255 1 195
-07 -255 -165 -11220 -420 -1 95 2145
-06 590 30 -3940 -290 -2 60 -2860 no
-05 1503 261 6378 18 -1 17 -2937 -198 18
— 04 2385 495 17655 405 1 35 -165 -160 -45 15
-03 3155 705 28190 790 4, 15 3755 no -10 -55 5
-02 3750 870 36660 1110 6i >0 7500 390 60 30 -30
-01 4125 975 42120 1320 82 '5 10125 600 120 135 75

00 4253 1011 44003 1393 88 3 11063 677 143 179 131
01 4125 975 42120 1320 82 5 10125 600 120 135 75
02 3750 870 36660 1110 66 0 7500 390 60 30 -30
03 3155 705 28190 790 41! 5 3755 no -10 -55 5
04 2385 495 17655 405 135 "» -165 -160 -45 15
05 1503 261 6378 18 -117 ’ -2937 -198 18
06 590 30 -3940 -290 -260 -2860 no
07 -255 -165 -11220 -420 -195 2145
08 -915 -285 -13005 -255 195
09 -1255 -285 -6460 340
10 -1122 -114 11628
11 -345 285
12 1265

NORM 30015 6555 260015 7429 4199 46189' 2431 429 429 231

TABLE 111

CONVOLUTES 1ST DERIVATIVE QUADRATIC A21

POINTS 25 23 21 19 17 IS* 13 11 9 7 5

-12 -12
-11 -11 -11
-10 -10 -10 -10
-09 -9 -9 -9 -9
-08 -8 -8 -8 -8 -8
-07 -7 -7 -7 -7 -7 -7
-06 -6 -6 -6 -6 -6 -6 -6
-05 -5 -5 -5 -5 -5 -5 -5 -5
-04 -4 -4 -4 -4 -4 -4 -4 -4 -4
-03 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3
-02 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2
-01 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

00 0 0 0 0 0 0 0 0 0 0 0
01 1 1 1 1 1 1 1 1 1 1 1

02 2 2 2 2 2 2 2 2 2 2 2
03 3 3 3 3 3 3 3 3 3 3
04 4 4 4 4 4 4 4 4 4
05 5 5 5 5 5 5 5 5
06 6 6 6 6 6 6 6
07 7 7 7 7 7 7
08 8 8 8 8 8
09 9 9 9 9
10 10 10 JO
11 11 11
12 12

NORM 1300 1012 770 570 408 28lD 182 110 60 28 10
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TABLE IV

CONVOLUTES 1ST DERIVATIVE CUBIC QUARTIC A31 A41

POINTS 25 23 21 19 17 15 13 11 9 7 5

-12 30866
-11 8602 3938
-10 -8525 815 84075
-09 -20982 -1518 10032 6936
-08 -29236 -3140 -43284 68 748
-07 -33754 -4130 -78176 -4648 -98 129 22
-06 -35003 -4567 -96947 -7481 -643 -4121 1133
-05 -33450 -4530 -101900 -8700 -930 -14150 -660 300
-04 -29562 -4098 -95338 -8574 -1002 -18334 -1578 -294 86
-03 -23806 -3350 -79564 -8179 -902 -17842 -1796 -532 -142 22
-02 -16649 -2365 -56881 -5363 -673 -13843 -1489 -503 -193 -67 1
-01 -8558 -1222 -29592 -2816 -358 -7506 -832 -296 -126 -58 -8

00 0 0 0 0 0 0 0 0 0 0 0
01 8558 1222 29592 2816 358 7506 832 296 129 58 8
02 16649 2365 56881 5363 673 13843 1489 503 193 67 -1
03 23806 3350 79504 8179 902 17842 1796 532 142 - 22
04 29562 4098 95338 8574 1002 18334 1578 294 -86
05 33450 4530 101900 8700 930 14150 660 -300
06 35003 4567 96947 7481 643 4121 -1133
07 33754 4130 78176 4648 98 -12922
08 29236 3140 43284 -68 -748
09 20982 1518 -10032 -6936
10 8525 -815 84075
11 -8602 -3938
12 -30866

NORM 1776060 197340 3634092 255816 23256 334152 24024 5148 1188 252 12

TABLE V

CONVOLUTES 1ST DERIVATIVE QUINTIC SEXIC A51 A61

POINTS 25 23 21 19 17 15 13 11 9 7 5

-12 -6356625
-11 - 11820675 -357045
-10 - 15593141 -654687 -15977364
-09 - 17062146 -840937 -28754154 -332684
-08 - 15896511 -878634 -35613829 -583549 -23945
-07 - 12139321 -752859 -34807914 -686099 -40483 -175125
-06 -6301491 -478349 -26040033 -604484 -43973 -279975 -31380
-05 544668 -106911 -10949942 -348823 -32306 -266401 -45741 -3084
-04 6671883 265164 6402438 9473 -8671 -130506 -33511 -3776 -5758
-03 9604353 489687 19052988 322378 16679 65229 -12 -1244 -4538 -90
-02 6024183 359157 16649358 349928 24661 169819 27093 2166 2762 18
-01 -8322182 -400653 -15033066 -255102 -14404 -78351 -14647 -573 -503 -2

00 0 0 0 0 0 0 0 0 0 0
01 8322182 400653 15033066 255102 14404 78351 14647 573 508 2
02 -6024183 -359157 -16649358 -349928 -24661 -169819 -27093 -2166 -2762 -18
03 -9604353 -489687 -19052988 -322378 -16679 -65229 12 1244 4538 90
04 -6671883 -265164 -6402438 -9473 8671 130506 33511 3776 5758
05 -544668 106911 10949942 348823 32306 266401 45741 3084
06 6301491 478349 26040033 604484 43973 279975 31380
07 12139321 752859 34807914 686099 40483 175125
08 15896511 878634 35613829 583549 23945
09 17062146 840937 28754154 332684
10 15593141 654687 15977364
11 11820675 357045
12 6356625

NORM 7153575 312455 5311735 81719 41990 20995 2431 143 143 1
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TABLE VI

CONVOLUTES 2ND DERIVATIVE QUADRATIC 1CUBIC A22 A32

POINTS 25 23 21 19 17 15 13 11 9 7 5

-12 92
-11 69 77
-10 48 56 190
-09 29 37 133 51
-08 12 20 82 34 40
-07 -3 5 37 19 25 91
-06 -16 -8 -2 6 12 52 22
-05 -27 -19 -35 -5 1 19 11 15
-04 -36 -28 -62 -14 -8 -8 2 6 28
-03 -43 -35 -83 -21 -15 -29 -5 -1 7 5
-02 -48 -40 -98 -26 -20 -48 -10 -6 -8 0 2
-01 -51 -43 -107 -29 -23 -53 -13 -9 -17 -3 -1

00 -52 -44 -110 -30 -24 -56 -14 -10 -20 -4 -2
01 -51 -43 -107 -29 -23 -53 -13 -9 -17 -3 -1
02 -48 -40 -98 -2 6 -20 -48 -10 -6 -8 0 -2
03 -43 -35 -83 -21 -15 -29 -5 -1 7 5
04 -36 -28 -62 -14 -8 -8 2 6 28
05 -27 -19 -35 -5 1 19 11 15
06 -16 -8 -2 6 12 52 22
07 -3 5 37 19 25 91
08 12 20 82 34 40
09 29 37 133 51
10 48 56 190
11 69 77
12 92

NORM 26910 17710 33649 6783 3876 6188 1001 429 462 42 7.

TABLE VII

CONVOLUTES 2ND DERIVATIVE QUARTIC lOUINTIC A42 A52

POINTS 25 23 21 19 17 15 13 11 9 7 5

-12 -429594
-11 31119 -346731
-10 298155 61845 -37791
-09 413409 281979 11628 -96084
-08 414786 358530 35802 45084-121524
-07 336201 331635 41412 105444 82251 -93093
-06 207579 236709 34353 109071 153387 88803 -72963
-05 54855 104445 19734 76830 137085 133485 98010- 10530
-04 -100026 -39186 1878 26376 71592 95568 115632 20358 -4158
-03 -239109 -172935 -15678 -27846 -11799 19737 53262 17082 12243-117
-02 -348429 -280275 -30183 -74601 -88749 -59253 -32043 117 4983 603 -3
-01 -418011 -349401 -39672 -105864-141873 -116577 -99528- 15912 -6963-171 48

00 -441870 -373230 -42966 -116820-160740 -137340-124740- 22230- 12210-630- 90
01 -418011 -349401 -39672 -105864-141873 -116577 -99528- 15912 -6963-171 48
02 -348429 -280275 -30183 -74601 -88749 -59253 -32043 117 4983 603 -3
03 -239109 -172935 -15678 -27846 -11799 19737 53262 17082 12243-117
04 -100026 -39186 1878 26376 71592 95568 115632 20358 -4158
05 54855 104445 19734 76830 137085 133485 98010- 10530
06 207579 236709 34353 109071 153387 88803 -72963
07 336201 331635 41412 105444 82251 -93093
08 414786 358530 38802 45084 121524
09 413409 281979 11628 -96084
10 298155 61845 -37791
11 31119 -346731
12 429594

NORM 4292145 2812095 245157 490314 478686 277134 160446 16731 4719 99 3
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TABLE VIII

CONVOLUTES 3RD DERIVATIVE CUBIC QUARTIC A33 A43

POINTS 25 23 21 19 17 15 13 11 9 7 5

-12 -506
-11 -253 -77
-10 -55 -35 -285
-09 93 -3 -114 -204
-08 196 20 12 -68 -28
-07 259 35 98 28 -7 -91
-06 287 43 149 89 7 -13 -11
-05 285 45 170 120 15 35 0 -30
-04 258 42 166 126 18 58 6 6 -14
-03 211 35 142 112 17 61 8 22 7 -1
-02 145 25 103 83 13 49 7 23 13 1 -1
-01 77 13 54 44 7 27 4 14 9 1 2

00 0 0 0 0 0 0 0 0 0 0
01 -77 -13 -54 -44 7 -27 -4 -14 -9 -1 -2
02 -149 -25 -103 -83 13 -49 -7 -23 -13 -l 1

03 -211 -35 -142 -112 17 -61 -8 -22 -7 1
04 -258 -42 -166 -126 18 -58 -6 -6 14
05 -285 -45 -170 -120 15 -35 0 30
06 -287 -43 -149 -89 7 13 11
07 -259 -35 -98 -28 -7 91
08 -196 -20 -12 68 28
09 -93 3 114 204
10 55 35 285
11 253 77
12 506

NORM 296010 32890 86526 42636 3876 7956 572 858 198 6 2

TABLE IX

CONVOLUTES 3RD DERIVATIVE QUINT IC SEXIC A53 A63

POINTS 25 23 21 19 17 15 13 11 9 7 5

-12 118745
-11 217640 23699
-10 279101 42704 425412
-09 290076 52959 749372 317655
-08 244311 51684 887137 1113240 4915
-07 144616 38013 787382 1231500 8020 93135
-06 5131 13632 448909 932760 7975 141320 11260
-05 -146408 -16583 -62644 259740 4380 113065 15250 1580
-04 -266403 -43928 -598094 -589080 -1755 3800 8165 1700 2295
-03 -293128 -55233 -908004- 1220520 -7540 -150665 -6870 -5 5 1280 65
-02 -144463 -32224 -625974- 1007760 -7735 -260680 -16335 - 2010 -2285 -40
-01 284372 49115 748068 948600 5720 -169295 7150 645 500 5

00 0 0 0 0 0 0 0 0 0 0
01 -284372 -49115 -748068 -948600 -5720 -169295 -7150 -645 -500 -5
02 144463 32224 625974 1007760 7735 260680 16335 2010 2285 40
03 293128 55233 908004 1220520 7540 150665 6870 55 -1280 -65
04 266403 43928 598094 589080 1755 -3800 -8165 - 1700 -2295
05 146408 16583 62644 -259740 -4380 -113065 -15250 - 1580
06 -5131 -13632 -448909 -932760 -7975 -141320 -11260
07 -144616 -38013 -787382- 1231500 -8020 -93135
08 -244311 -51684 -887137- 1113240 -4915
09 -290076 -52959 -749372 -317655
10 -279101 -42704 -425412
11 -217640 -23699
12 -118745

NORM 5722860 749892 4249388 4247012 16796 2144809 9724 572 286 2
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TABLE X

CONVOLUTES 4TH DERIVATIVE CUARTIC OUINTIC A44 A54

POINTS 25 23 21 19 17 15 13 11 9 7 5

-12 858
-11 803 858
-10 643 793 594
-09 393 605 540 396
-08 78 315 385 352 36
-07 -267 -42 150 227 31
-06 -597 -417 -130 42 17 621 84
-05 -857 -747 -406 -168 -3 251 64 6
-04 -982 -955 -615 -354 -24 -249 11 4 18
-03 -897 -950 -680 -453 -39 -704 -54 -1 9 6
-02 -517 -627 -510 -388 -39 -869 -96 -6 -11 l
-01 253 133 0 -68 -13 -429 -66 -6 -21 -7

00 1518 1463 969 612 52 1001 99 6 14 -3
01 253 133 0 -68 -13 -429 -66 -6 -21 -7
02 -517 -627 -510 -388 -39 -869 -96 -6 -11 1
03 -897 -950 -680 -453 -39 -704 -54 -l 9 6
04 -982 -955 -615 -354 -24 -249 11 4 18
05 -857 -747 -406 -168 -3 251 64 6
06 -597 -417 -130 42 17 621 84
07 -267 -42 150 227 31 756
08 78 315 385 352 36
09 393 605 540 396
10 643 793 594
11 803 858
12 858

NORM 1430715 937365 408595 163438 8398 92378 48621 143 143 U

TABLE XI

CONVOLUTES 5TH DERIVATIVE QUINTIC SEXIC A55 A65

POINTS 25 23 21 •19 17 15 13 11 9 7 5

-12 -275
-11 -500 -65
-10 -631 -116 -1404
-09 -636 -141 -2444 -44
-08 -501 -132 -2819 -74 -55
-07 -236 -87 -2354 -79 -88 -675
-06 119 -12 -1063 -54 -83 -1000 -20
-05 488 77 788 -3 -36 -751 -26 -4
-04 753 152 2618 58 39 44 -11 -4 -9

-5-03 748 171 3468 98 104 979 18 1 -4
-02 253 76 1938 68 91 1144 33 6 11 4
-01 -1012 -209 -3876 -102 -104 -1001 -22 -3 -4 -1

00 0 0 0 0 0 0 0 0 0 0
01 1012 209 3876 102 104 1001 22 3 4 1

02 -253 -76 -1938 -68 -91 -1144 -33 -6 -11 -4
03 -748 -171 -3468 -98 -104 -979 -18 -1 4 5
04 -753 -152 -2618 -58 -39 -44 11 4 9
05 -488 -77 -788 3 36 751 26 4
06 -119 12 1063 54 83 1000 20
07 236 87 2354 79 88 675
08 501 132 2819 74 55
09 636 141 2444 44
10 631 116 1404
11 500 65
12 275

NORM 1300650 170430 1931540 29716 16796 83980 884 52 26 2
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PROGRAM 1

* SUBROUTINE SMOOTH -9 POINT 1

c 2
SUBROUTINE SMOOTH (N,NDATA, ,MDATA) 3

c 4
c INPUTS 5
c N NUMBER OF RAW DATA POINTS 6
c NDATA ARRAY OF N RAW DATA POINTS STORED IN MAIN PROGRAM 7
c DUMMY DIMENSION 8
c OUTPUTS 9
c M NUMBER OF SMOOTHED DATA POINTS = N-8 10
c MDATA ARRAY OF M SMOOTHED POINTS STORED IN MAIN PROGRAM 11
c MAY BE SAME REGION IN MAIN PROGRAM AS NDATA 12
c DUMMY DIMENSION 13
c 14

DIMENSION NDATA!1000),MDATA<1000),NP(9) 15
c 16
c INITIALIZATION SEGMENT 17
c 18

M = N-8 19
DO 10 1=2,9 20
J=I-1 21

10 NP!I) = NDATA!J) 22
c 23
c SMOOTHING LOOP 24
c 25

DO 200 1=1,M 26
J= I +8 27
DO 11 K=1,8 28
KA = K+l 29

a NP1K)=NP(KA) 30
NP(9) = NDATA!J) 31
NSUM = 59*NP<5)+54*{NPK>+NP(6))+39*(NP!3)+NP(7))+14*(NP(2)+NP<8) )- 32

121*!MP!1)+NP(9)) 33
MDATA!I) = NSUM/231 34

200 CONTINUE 35
c 36

9999 RETURN 37
C 38
* END 39

nomial determined from a least squares
fit to 9 points. Since the value of a33
is 3!633, the denominator in the above
expression must be divided by 6 to get
the normalizer of 198 found in Table III.

In all of the above derivations, it has
been assumed that the sampling interval
is the same as the absolute abscissa
interval—i.e.,   =1. If not, the
value of    must be included in the
normalization procedure. Hence, to
evaluate the sth derivative at the central
point of a set of m values, based on an
nth degree polynomial fit, we must
evaluate

 
a„,m = s'.b„,m = + -- VII

Note that since   ° = 1, the interval is
of no concern in the case of smoothing.

Repeated Convolution. The proc-
ess of convolution can be repeated
if desired. For example, one might
wish to further smooth a set of pre-
viously smoothed points, or to obtain
the derivative only after the raw

data has been smoothed. Thus, if
we convolute using p points the first
time, and m points the second,

G iaark An,,

(/)Vl ¿  ,,ß, ,   ^ N,t,
t — m j mP

   
i — m j — p

    Gi,,m Cjt¡p Fi+j
i — — m j — — p

__

  (*.+* > N.¡m N.lP

VIII

thus:

(/)V. =

ft— (m + p)

ft— — (m + p)_
Nk

IX

X

XI

where h = i -\- j
Nh =   '*!».1 Nt¡p N,t„

i — m j — p
= ,    c,c'

t — — m j — — p

Equation XI shows that one need not
go through the convolution procedure
twice, but can do a single convolution,
using 2(m+p) + l points, and a table of
new integers formed by combining the
c’s.

For the case where a cubic smooth is
to be followed by obtaining the quad-
ratic first derivative using m = 2 and
P = 2:

Ci = -2, -1, 0, 1, 2, Ni = 10
C’i = -3, 12, 17, 12, -3, V,· = 35
d-4 = C-2C'_2 = 6
<L3 = C-2C'-, + C-,C’-2 =

-36 + 3 = -33
d-2 = C-2C o + CoC't +

C-iC'-i = -34 - 12 = -46
cL, = C-iC'i + C,C'-2 +

C-iC'o + CoC'-i =

-24 - 3 - 17 = -44
do = C-2C'2 + C2C'-2 + C,C’_, -

C-.C', + CoC'o = 0
di = Bv symmetry = 44
di = 46
d3 = 33
di = — 6

Ah = 350  
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PROGRAM 2

* SUBROUTINE CENTER LORENZ
C 2

SUBROUTINE CENTER(NPOI NT,X,Y,TRANS,DEN $) 3
C 4
C COMPUTATION OF PRECISE PEAK POSITION AND INTENSITY USING 9 POINTS 5
C TO A QUADRATIC,Y = A20tA21X +A22XSQ, X=(-A21/2A22 ) . IN ORDER TO 6
C APPROXIMATE A LORENTZ CONTOUR, VALUES ARE CONVERTED TO ABSORBANCE 7
C AND THE RECIPROCALS ARE USED IN DETERMINING THE COEFFICIENTS BY 8
C ORTHOGONAL POLYNOMIALS 9
C 10

DIMENSION NPO I NT(25 ),DNS(9) 11
60 DO 61 1=1,9 12

IP=I+8 13
61 DNS(I)=1./AL0G10F(1000./NPOINT!IP)) 14

P4=DNS(1)+DNS<9) 15
P3=DNS(2)*DNS(8) 16
P2=DNS(3)+DNS<7) 17
Pl=DNS(4)+DNS<6) 18
A20=(-21.*P4)+{14.*P3)+(39.*P2)+(54.*Pl)+(59.*DNS<5)) 19
A20=A20/231. 20
A21=(4.»(DNS(9)-DNS(1))) (3.*(DNS(8)-DNS(2)))+ (2.»(DNS(7)-DNS(3))) 21

l+(DNS(6)-DNS(4) ) 22
A21=A21/60. 23
A22=(28.»P4)+(7.»P3)-(8.»P2)-(17.*P1)-(20.*DNS(5)) 24
A22=A22/924. 25
X=(-A2l/(2.0»A22)) 26
Y=A20+X*(A21+X»A22) 27
DENS=1·0/Y 28
TRANS=1000./I10.0**DENS) 29

1000 RETURN 30
* END 31

APPENDIX II

The following eleven tables contain
the convoluting integers for smoothing
(zeroth derivative) through the fifth
derivative for polynomials of degree two
through five. They are in the form of
tables of A,,, where i is the degree of the
polynomial and j is the order of the
derivative. Thus, to obtain the third
derivative over 17 points, assuming a
fourth degree polynomial (A43), one
would use the integers in the column
headed 17 of Table VIII.

APPENDIX III. COMPUTER PROGRAMS

The programming of today’s high
speed digital computers is still an art
rather than a science. Different pro-
grammers presented with the same

problem will, in general, write quite
different programs to satisfactorily
accomplish the calculation. Two pro-
grams are presented here as examples
of the techniques discussed in this paper.
They are written in the FORTRAN
language, since this is one of the most
widespread of the computer pro-
gramming languages. Programmers
using other languages should be able to
follow the logic quite readily and make
the appropriate translations. Each is

written as a subroutine for incorporation
into a larger program as required.

Program 1 is a 9-point least squares
smooth of spectroscopic data. The raw
data has previously been stored by the
main program in the region NDATA.

Lines 1 through 25 are explanatory and
housekeeping to set up the initial con-
ditions. The 9-point array NP contains
the current set of data points to be
smoothed. The main loop consists of
lines26through35. Theinnerloop, lines
28 through 30, moves the previous set of
points up one position. The next point
is added by line 31. In lines 32 and 33
the convoluting integers are multiplied
by the corresponding data, and the
products summed. In line 34, the sum
is divided by the normalizing constant
and the resulting smoothed point is
stored.

Program 2 computes the precise peak
position and intensity of a set of points
which is known to contain a spectro-
scopic peak. In order to approximate a
Lorentz contour (5), values are con-
verted to absorbance and the reciprocals
are used in determining the coefficients
of a polynomial (6) having the form:

y =     +  ,  ix +onx2

The center is at the point where x =

— Oii/2on.
The data points to be used are points

9 through 17 stored in the array NPOINT
and may have any value from 30 through
999. In the loop lines 12 through 14, each
of these points is converted to absorb-
ance, the reciprocal taken, and the re-
sult stored in the array DNS.

Since for a20 and a22, the convolute
function is symmetric about the origin,
forming the sums P4 through PI in lines
15 through 18 shortens the computation.
The first constant, o20 is found in line
19, using the values of the 9-point
convolute from Table I, and normalized
in line 20.

The value of a24 is computed in lines
21-22 using the convolute from Table
III (first derivative-quadratic). Note
that this is an antisymmetric function.
Table VI furnished the constants for the
computation of an in line 24. Note
that the normalizing factor of 924 is 2!
times the value given in the table. X
is computed in line 26 and the corre-

sponding value of y is computed in line
27 by substituting the appropriate
values into the polynomial. The
absorbance or optical density (DENS)
is, of course, the reciprocal of y (line 28),
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Controlled-Potential Coulometric Analysis
of N-Substituted Phenothiazine Derivatives
F. HENRY MERKLE and CLARENCE A. DISCHER

College of Pharmacy, Rutgers—The State University, Newark 4, N. J.

  Controlled-potential electrolysis is
suitable for the coulometric deter-
mination of several pharmaceutically
important N-substituted phenothiazines.
The concentration of sulfuric acid, used
as the supporting electrolyte, has a

differentiating effect on the half-wave
potentials of the compounds studied.
Polarographic measurements obtained
with a rotating platinum microelec-
trode established current-voltage
curves. The compounds could be
quantitatively oxidized to a free
radical or to a sulfoxide by selection
of suitable acid concentrations and
applied potentials. Electroreduction
of the free radicals occurs at approxi-
mately +0.25 volt vs. S.C.E. on a

platinum electrode. In the case of the
sulfoxides, a single 2-electron reduc-
tion step occurred at ca. —0.95 volt
vs. S.C.E. on a mercury pool cathode.
The determinations showed good re-

producibility and an accuracy of ca.
1 % was obtained with sample con-
centrations of 1 0~3  4 or greater.

The
establishment of an oxidation

mechanism for the various N-
amino-substituted phenothiazines is a

subject of considerable biological
significance (2). The character of this
oxidation has been investigated by
using a variety of analytical methods
(1, 4, 7, 8). However, because of the
transient nature of a free radical inter-
mediate, relatively little has been done
to demonstrate the quantitative aspects
of this reaction.

The application of controlled-
potential electrolysis to the analysis of
phenothiazine derivatives is an

extension of previous work by the
authors on the electro-oxidation of
chlorpromazine (6). Since these com-

pounds are electrolytically active at
moderate applied potentials, con-

trolled-potential coulometry offers a

rapid and absolute approach for their

quantitative determination. Moreover,
this technique makes possible the direct
determination of the individual species
involved in the oxidation sequence.

The oxidation reactions for pheno-
thiazine derivatives are, in general,
represented by:

R: —  R* "j- e (1)

and

R- + H20 — S + 2H + + e~ (2)

in 122V sulfuric acid, and

R: —  R· + e~ (3)

and

spontaneous
2R- + H20--  R: + S + 2H +

(4)

in LV sulfuric acid (2, 6), where R:
represents the initial reduced form of
the compound, R· represents the free
radical obtained upon 1-electron oxida-
tion, and S represents the corresponding
sulfoxide.

EXPERIMENTAL

Instrumentation. Polarograms were
obtained on a Sargent Model XXI re-

cording polarograph. An H-type cell
was used, with a sintered-glass disk of
medium porosity separating the two
electrode compartments. A rotating
platinum microelectrode served as the
working electrode vs. S.C.E. as refer-
ence. To obtain well defined reproduci-
ble S-shaped curves it was necessary
to pretreat the microelectrode by anodic
polarization for 10 minutes in IN or
12   sulfuric acid at +1.0 volt vs. S.C.E.,
followed immediately by a brief 2- to 3-
minute electrolysis with the platinum
microelectrode as the cathode.

The controlled-potential electrolyses
were performed with an electronic con-
trolled-potential coulometric titrator,
Model Q-2005 ORNL (S). Readout
voltages were measured with a Non-
Linear Systems Model 484 A digital
voltmeter.

Electrolysis Cells and Electrodes.
Two closed cells with operating capaci-
ties of 100 and 20 ml., respectively,
were used for oxidations. They were
constructed to accommodate large
cylindrical, wire mesh, rotating plati-
num electrodes, 2.5 cm. in diameter
and 5 cm. in height for the large cell,
and 1 cm. in diameter and 3 cm. in
height for the small cell. The reference
electrode (S.C.E.) and auxiliary plati-
num cathode were isolated from the
sample compartment by sintered-glass
diaphragms and agar plugs.

The sample compartment of the
reduction cell consisted of a 125-ml.
wide-mouthed Erlenmeyer flask with a

standard-taper neck and fitted- cover.

Approximately 30 ml. of mercury was
used as the cathode pool. A glass
propeller-type stirrer served to agitate
the mercury pool. The reference elec-
trode (S.C.E.) and auxiliary electrode
(platinum anode) chambers were sepa-
rated from the cathode compartment by
glass side-arms fitted with sintered-glass
diaphragms and agar plugs.

The three cells were constructed so
that nitrogen gas could be bubbled
through the solution before and during
electrolysis. The platinum gauze elec-
trodes and the glass stirrer were rotated
at 600 r.p.m. using a Sargent Syn-
chronous Rotator.

Materials. Reagents. The acid
solutions were prepared using sulfuric
acid, Baker analyzed reagent, distilled
water, and ethanol U.S.P. grade.

Phenothiazine Derivatives. The
compounds studied were provided in
powdered form by the suppliers in-
dicated: chlorpromazine hydrochloride,
chlorpromazine sulfoxide hydrochloride,
prochlorperazine ethanedisulfonate, and
trifluoperazine dihydrochloride, Smith,
Kline & French Laboratories; pro-
methazine hydrochloride and promazine
hydrochloride, Wyeth Laboratories; tri-
flupromazine hydrochloride, E. R.
Squibb Laboratories; thioridazine hy-
drochloride, Sandoz Laboratories. The
structural formulas and generic names
of the compounds used in this work are
shown in Figure 1.
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