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Abstract

Background: The problem of locating valid peaks from data corrupted by noise frequently arises
while analyzing experimental data. In various biological and chemical data analysis tasks, peak
detection thus constitutes a critical preprocessing step that greatly affects downstream analysis and
eventual quality of experiments. Many existing techniques require the users to adjust parameters
by trial and error, which is error-prone, time-consuming and often leads to incorrect analysis
results. Worse, conventional approaches tend to report an excessive number of false alarms by
finding fictitious peaks generated by mere noise.

Results: We have designed a novel peak detection method that can significantly reduce parameter
sensitivity, yet providing excellent peak detection performance and negligible false alarm rates from
gas chromatographic data. The key feature of our new algorithm is the successive use of peak
enhancement algorithms that are deliberately designed for a gradual improvement of peak
detection quality. We tested our approach with real gas chromatograms as well as intentionally
contaminated spectra that contain Gaussian or speckle-type noise.

Conclusion: Our results demonstrate that the proposed method can achieve near perfect peak
detection performance while maintaining very small false alarm probabilities in case of gas
chromatograms. Given the fact that biological signals appear in the form of peaks in various
experimental data and that the propose method can easily be extended to such data, our approach
will be a useful and robust tool that can help researchers highlight valid signals in their noisy
measurements.

Background

When experimental observations are made, noise is inev-
itably introduced by instruments and surrounding envi-
ronments. Needs for detecting peaks in the presence of
noise thus occur frequently when analyzing experimental
data. Valid signals sometimes appear in the form of peaks,
and for accurate analysis of the observations made,
researchers want to separate true peaks from fictitious

peaks generated by noise. For instance, peak detection is
considered critical in analytical chemistry in which the
objective is to separate, identify and quantify sample com-
pounds by using techniques such as gas chromatography
(GC) and mass spectrometry (MS). Figure 1 shows an
actual GC data set [1] that contains a great deal of false
peaks resulting from instrumental noise. Another exam-
ple can be found in a recent study called multiplexed
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Plot of GC data [|]. Number is labeled on top of each true
peak. According to [1], samples were analyzed on a Varian
3400 GC (Varian Instrument, Palo Alto, CA) equipped with a
100 m % 0.32 mm SP2380 (Supelco Inc., Bellefonte, PA) capil-
lary column and flame-ionization detector (FID); helium was
used as carrier gas.

hydroxyl radical (¢ OH) cleavage analysis (MOHCA),
which is to predict the helical arrangements of large RNA
molecules in a high-throughput manner [2]. Since incor-
rectly introduced false peaks have adverse effects on the
subsequent procedures thereby resulting in a mislead con-
clusion, it is critical to choose the right peak correspond-
ing to the true chemical.

In order to filter out false peaks and selectively detect valid
ones, several preprocessing techniques such as threshold-
ing or lowpass filtering (LPF) have been employed [3].
However, in many situations, these approaches either fil-
ter out valid peak information or fail to reject false peaks.
Additionally, choosing appropriate parameters (e.g., cut-
off frequency, rejection threshold) is mostly based on
trial-and-error, so it is not uncommon to manually adjust
these parameters. Indeed, since the peak detection is a
blind problem and no prior knowledge on the informa-
tion is given, tuning parameters has been a nontrivial task
causing high false alarm and misdetection rates.

In this paper, we propose a novel peak detection method
that is much less sensitive to parameter choices than con-
ventional techniques, yet produces a very robust and accu-
rate detection performance on noisy experimental data.
The key feature in our method is a nonlinear preprocess-
ing to suppress the noise and to strengthen the peak sig-
nal. Two major ingredients achieving this objective are
geometric mean filtering (GMF) and wavelet domain
denoising. A function of multiplying the observation and
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the reference signal for achieving correlation gain has
been widely used in communication and signal process-
ing [4]. Since no desired reference is available for the peak
detection problem, the shifted version of experimental
signal itself can serve as an approximate reference to
obtain a coherent amplification of the peak signal.

Furthermore, since the output of GMF suppresses ran-
domly fluctuating noise better than the conventional
arithmetic-mean based filtering, the proposed GMF effec-
tively differentiates the peak information and the noise.
Once the GMF is finished, further cleaning of noise i.e., a
denoising operation, is performed in the wavelet domain.
Due to the increased frequency resolution of wavelet
transform in low frequencies compared to the Fourier
transform [5], peak information frequencies can easily be
localized by their energy, and thus the noise and
unwanted signal can nicely be separated from the peak. It
is worth pointing out that there is a close relationship
between the proposed approach and the denoising studies
in image processing [6,7] in the sense that both filter out
noise in the wavelet domain. While the image denoising
needs to consider the low-energy wavelet coefficients for
preserving the image shape, such is unnecessary for the
peak detection problem since the unique goal is the iden-
tification of peak points. In fact, since the peak informa-
tion is rarely located in wavelet coefficients with small
energy, cleaning of those coefficients will rather help, in
particular, to suppress sharp and narrow-shaped false
peaks so-called speckles. When the GMF and wavelet
domain denoising are finished, we clearly observe the
suppression of the noise magnitude. Due to this clear dis-
tinction between the signal and noise, employing a non-
linear operation (amplification followed by slicing) can
remove substantial amount of noise and hence facilitate
the peak collection operation.

We test the proposed method with gas chromatography
data and show that the proposed approach exhibits excel-
lent peak detection performance with small false alarm
probabilities. Further, we demonstrate the robustness of
the proposed method using the extended scenario in
which artificial noise, viz. speckles and Gaussian noise, is
added into the data.

Proposed method

In this section, we briefly discuss the peak signal model
used and then present the proposed preprocessing opera-
tions. The proposed preprocessing consists of three major
steps: 1) GMF, 2) wavelet domain denoising, and 3) non-
linear amplification. Although these operations look
independent, they are tightly correlated together for
achieving the common goal. When the preprocessing
operations are finished, zero-crossing-based peak collec-
tion [8] is finally performed in order to reap the detected
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peaks. The overall steps of the proposed method are illus-
trated in Figure 2, and more details of each step will be
described in the following subsections.

Peak signal model
The discrete model for an experimental observation we
use is

r[n] = g[n] + v[n] (1)

where g [n] and v [n] are the peak and noise signal, respec-
tively. In order to design a systematic peak detection
method, we should rely upon minimum guidelines on the
characteristics of peak signal to detect.

For this purpose, we employ the following assumptions
on the peak signal g [n] and peak point n,.

[ Noisy experimental observation j

~=

Geometric mean filtering

<=

Wavelet domain denoising

<L

Nonlinear signal amplification

<>

Peak collection and
Peak point adjustment

~ >

‘ Peak point index ‘

Figure 2

Overview of the proposed method. The proposed
method consists of four major steps: (1) geometric mean fil-
tering, (2) wavelet domain denoising, (3) Nonlinear signal
amplification, and (4) peak collection and adjustment.
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A.1) g [n] is gradually changing in a local interval I, = {n,
- 6, U, n, + 6} around peak point n,. That is, |g[n;] - g[n,]|
<o for adjacent values of n;, n, € I,, where ; is a pre-defined
small constant.

A.2) The magnitude of peak signal is highest in I,. In other

words, n,, a valid peak point, should satisfy r[n,] > E,; (r)

where I, =1, {n,} .

A.3) g|[n] is monotonically increasing in the local interval
[n,- 6n,) and monotonically decreasing in (n, n, + J].

Notice that, since we cannot discriminate the signal g [n]
and noise v [n], the assumptions we described in A.1) and
A.3) are rather conceptual. Further, we have no clue on
and &, which are observation dependent parameters. In
spite of this, these assumptions play an important role in
our preprocessing since they provide useful guidance on
the algorithm design.

Geometric mean filtering (GMF)
The first step in the preprocessing stage is the geometric
mean filtering (GMF). The output of (2k + 1)-tap GMF

x [n] for the input sequence x [n] is defined as

1
2k+1 (2)

k

i[n] = H xn—i]

=k

For filtering out the noise from the data, the correlation
between x [n] and shifted version x [n - i] is exploited. As
an example, consider the 3-tap (k = 1) GMF filter. For
notational convenience, we denote the value of g [n] at n
=nyby gyand v [n] at n = ny- 1, ny, and ny+ 1 by v, v,,
and v,, respectively.

Noting that g [n] is gradually changing by A.1), the obser-
vations at ny, n,- 1, and ny + 1 are

rnol =80 +vo (3)
ng —1]=(80— &) +v_; (4)
g +1] = (80— €,) + 14 (5)

are where ;< fori=1, 2. The GMF of r [n,- 1], r [n,], and
T [ng+ 1] is
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! 1

1 5 il
#in] = [Hr[no - i]] = (rlmg = Tlrlnolring +1)3
i=—1

1

= (80 + 8o(vy +vg + 11— € — €;) + 0(go)) 3.

(6)

Due to the random fluctuation on v [n], the coefficient
associated with g2, which is essentially the sum of zero

mean random variables, gets close to zero. Denoting this
term by ¢, (6) can be written as

1
F[n]~g0[1+5]3. )
80

As the filter tap increases, & decreases and (1 + % ) comes

close to unity, and thus 7[n][n] well approximates g,. Fig-

ure 3 illustrates the 5-tap GMF filter output for gradually

changing function g[n] =100 - ( ﬁ )2 .

Although similar results might be obtained by the arith-
metic mean filtering, for the region where the peak
assumption is violated (e.g., the data is away from the
peak), they becomes distinct. Specifically, if g [n] ~g, is
dominant over v [n] in I, by the assumptions A.1) and

Original Data

100} ‘ \ ‘ 1
80 1
60 1
401 1
20 1

0 500 1000 1500 2000

After GCF

100} ‘ ‘ 1
80| .
60| 1
40t .
20} .

0

0 500 1000 1500 2000

Figure 3
Plots for r [n] and 7 [n]. Original data (r [n]) and after
GCF (7 [n]).
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A.2), then y [n] ~g, so that the arithmetic mean is similar
to the geometric mean by the arithmetic-geometric mean

inequality. However, for the samples in I ;, g [n] is not

dominant any more, and the geometric mean value
becomes noticeably smaller than the arithmetic mean

value in [ ; . Figure 4 illustrates this behavior for a ran-

domly generated sequence. Owing to the function of low-
pass filtering as well as the suppression of randomly
fluctuating noise, the GMF output becomes more amena-
ble to the subsequent denoising operation.

Wavelet domain denoising

For further suppression of GMF filtered output, the wave-
let transform is employed. The wavelet transform lends
itself to separation between the signal and noise thanks to
the inherent use of multi-resolution techniques by which
different frequencies are analyzed with different resolu-
tions [5]. In fact, it is far more efficient for extracting peak
signals than the Fourier transform that only provides a
constant resolution.

After passing through the GMF, 7 [n] is readily modeled as

rn] = g[n] + v[n] (8)

Original Data |
—&— Arithmetic Mean
—<— Geometric Mean

35

Figure 4

Arithmetic mean 7 [n] vs. Geometric mean 7 [n].
Although similar results might be obtained by the arithmetic
mean filtering, for the region where the peak assumption is
violated (e.g., the data is away from the peak), they becomes
distinct.
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where, contrary to A.1), the filtered noise signal 7[n] is

now limited globally, i.e.,

v [n]| <o- Thus, the noise power
is clearly insignificant compared to the signal power and
the signal and noise spectrum become more distinct in the
transformed domain in their magnitude. In order to elim-
inate v[n], we take the wavelet transform of 7 [n] and
then do the thresholding of the spectrum in the wavelet
domain. Due to the enhanced frequency resolution in low
frequencies, wavelet coefficients of the peak signal, mostly
located in low frequencies, are well localized, and the

wavelet coefficient of 7 [n] becomes
R(k) = G(k) + V (k) (%)

where R (k), G(k), and V (k) are the wavelet coefficients
of 7 [n], g [n], and v [n], respectively. By applying the GMF
function, the peak signal energy is compacted into a few
wavelet coefficients, and the noise contributes mainly to
the rest of insignificant coefficients. Hence, to denoise V,
we use the simplified assumption that low-energy coeffi-
cients are mostly due to the noise, whereas high-energy
coefficients are mainly from the peak signal. A proper
denoising strategy in this model is 1) to remove the low-
energy wavelet coefficients substantially, and 2) to retain
or modify slightly the high-energy coefficients. Although
these assumptions might not strictly be true, they are suf-
ficient for our purpose since the effect of small loss in the
peak signal energy is minimal. For denoising V from R,
we use the soft-threshold estimator [9] given by

R(k) = sgn(R(k)) - max (| R(k)| - T;,0).  (10)

In Eq. (10), threshold T), is chosen as the o-percentile

mean absolute of R given by

Th=|,1a|2|é(j)|

jEIO(

(11)

where I, is the set of index « satisfying R(k) < F‘g‘l (ﬁ ),

and |A| is the cardinality of set A. As a trivial case, if o =
100, then Tj returns to the mean absolute. The reason why
we use the percentile mean is to control the threshold so
that no valid peak signal is being erased. If some peak sig-
nal magnitude is very high, then the mean absolute value
will also be large so that valid peaks with relatively small
magnitude might be erased. We observe from the empiri-
cal test that 90 ~95 percentile generates satisfying results.
Due to the removal of low-energy wavelet coefficients
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(| R (k)| < T}), the time-domain noise signal is suppressed
substantially, as shown in Figure 5, and the signal after the
inverse wavelet transform is safely modeled as

(12)

rin] = g[n] + v[n]
where | v[n] <€, (€o<€y)-

Nonlinear signal amplification
As a final step of the preprocessing stage, nonlinear signal
amplification of ¢ [n] is applied. Nonlinear signal ampli-

fication refers to the magnification of peak and the anni-
hilation of noise signals followed by slicing. This
operation is useful since it provides the last cleanup of the
residual noise before the final peak collection step.

Since the peak collection is done via the zero-crossing
operation after the derivative, of note is that the differen-
tial operator might amplify abrupt noise fluctuations,
even though the magnitude of noise is very small. In fact,
it is one of the primary reasons for high false alarm rates.

In order to prevent this behavior, it would be useful to
clean up the small magnitude noise that can never be clas-
sified as a true peak. Towards this end, we use the follow-
ing function

2
rinl

B~ (13)

7[n] = pos

Before Wavelet Denoising

200 400 600 800 1000 1200 1400 1600 1800

After Wavelet Denoising

_30 1 L L 1
0 200 400 600 800

1000 1200 1400 1600 1800
Figure 5

GC data before and after the wavelet-domain denois-
ing. The GC data is already GMF filtered.
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N

.
E[7]

will amplify 7 [n] greater than E |7 ] and suppress 7 [n]

where pos(x) = x forx > 0 and 0 otherwise. Clearly,

smaller than E [ 7 ]. Because | r[n] |< t, for the pure noise
(when g [n] = 0) and also |r[n]|< E[r], by the proper
choice of ¢, the argument inside the pos function

becomes negative, ending up being zero after this pos
function. For the choice of ¢, it would be ideal to use

&o R,
A - However, since &, «E|[7]

for most cases, 0.1 < ¢, <
1 would be enough as a simple choice. In Figure 6, we plot
aresult of Eg. (13) for simulated data with ¢, = 1. As clearly
shown in the figure, the noise with insignificant magni-
tude, which is mostly noise in real application, is removed

thereby suppressing the false alarm rate significantly.

Peak collection

In the absence of noise, the peak detection problem is
equivalent to the problem of finding local maxima, and

hence the points ¢, satisfying IO =0 become the

ot

Lo
solutions for continuous-time signals f{t) [8]. In the case
of discrete sequence f [n], the difference Ay, = f[n] - f[n -
1] is being used instead of the derivative. Also, since no

Before Nonlinear Peak Amplification
12 T T

101 b
8 ]
61 J
4 ]
ol /\ |
0 b i L i i Mk i wddaie

0 200 400 600 800 1000
After Nonlinear Peak Amplification

12 T .

101 b
8 ]
6 ]
41 i
2 ]
00 260 460 660 860 1000

Figure 6

lllustration of simulated data before and after the
nonlinear signal amplification. The noise with insignifi-
cant magnitude is removed by nonlinear signal amplification,
thereby facilitating the subsequent peak collection step.
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point satisfying Ay ,; = 0 might exist, zero-crossing detec-

tion is indispensable. That is, if Ag(,;> 0 and Af,,1;< 0, n
or n + 1 is chosen as the peak point depending on their
magnitude.

Results and Discussion
Test setup

In this section, we compare the performance of the pro-
posed method with some conventional techniques
including lowpass filtering (LPF) based preprocessing,
wavelet domain thresholding (soft-thresholding [6] as
well as hard-thresholding [9]), and pattern matching in
continuous wavelet transform (CWT) domain (abbrevi-
ated to CWT method) [10]. For the proposed method and
the wavelet domain thresholding, we employ the stand-
ard Cohen-Daubechies-Feauveau wavelet transform [11].
Defining the set containing the peak indices of original
datar[n] as A, and that of preprocessed data 7 [n] as A;,
the detection probability (P,) and the modified false

alarm probability (Py,) are defined as

A7 A

pp =Tl (14)
A4
and
_ c
Pyy = ATDAL] (15)
|AF|
Real GC data

In the test, 10 spectra obtained from an actual gas chroma-
tography (GC) experiment were used for the performance
comparison shown in Figure 7. Samples were analyzed on
Acme 6100 GC with advanced pneumatic control (Young
Lin Instrument Co, Korea). The analyzer is equipped with
a HP Innowax capillary column (30 m x 0.53 mm, 1.0 um
film thickness; Hewlett Packard, Palo Alto, USA) and
flame-ionization detector (FID). Oven temperature pro-
gram starting with a 15°C/min ramp from 150 to 180°C,
followed by a ramp to 240°C at 5°C/min was employed.
Helium was used as carrier gas. The flow rate was main-
tained at 3 ml/min for separations by using a mass flow
controller, and the head pressure was set to 42.9 psi. The
inlet temperature of the GC was 280°C. The injection vol-
ume was 0.2 zl. The temperature of the FID was set to
280°C. System control and data evaluation were done
using Autochro-3000 Data System. The minimum detec-
tion level (MDL) of the FID employed is less than 3.2 car-
bon pg/sec (dodecane) and the sensitivity is 19
mCoulomb/sec. It also has a linear dynamic range of 107.
The chromatograms used were measured at 0.00085 min
intervals and each sample was analyzed for 14 min.
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Figure 7

Performance comparison (real data). The values in vertical axis represent P, and those in horizontal axis represent |0 x
Pra- (See 'Real GC data' section for more details on the data used.)

Simulated GC data

For checking the performance in noisier conditions, we
additionally test the cases in which Gaussian and speckle-
type random noise signals are intentionally added into
the GC data used in [1]. As mentioned in the original arti-
cle, samples were analyzed on a Varian 3400 GC (Varian
Instrument, Palo Alto, CA) equipped with a 100 m x 0.32
mm SP2380 (Supelco Inc., Bellefonte, PA) capillary col-
umn and flame-ionization detector (FID). Helium was
used as carrier gas.

Availability
The source code of the proposed method and the data
used for validation are available at http://dna.korea.ac.kr/

pub/gcpeak/.

Experimental results

Figure 8 shows the test results from the GC data used in
[1], where the x-axis in the curves indicates retention time
(unit in minutes) and y-axis represents intensity (unit in
millivolts). In the plot, 11 true peaks in the pre-deter-
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GC data and the peak positions detected by each
method. Black circles indicate the original peak positions,
and red diamonds correspond to the detected peak posi-
tions.

mined positions are marked by black circles and the peak
positions detected by each technique by red diamonds.
Although the LPF-based processing shows good peak
detection performance, we observe that this method
detects too many invalid peaks resulting in high false peak
probabilities. Since the thresholding in the wavelet
domain without the proper distinction of peak signal and
noise removes too much energy (including the energy of
g [n]), the thresholding-based approaches tend to miss
many valid peaks. Hence, even though the false alarm
probability is moderate, this method is not desirable due
to its poor detection performance. Interestingly, the pro-
posed method is the best among the tested methods and
displays the perfect performance (P, = 1 and Pp, = 0).

To provide a comprehensive view on performance, we test
the 10 spectra obtained from the GC experiments previ-
ously described (see 'Real GC data' above) and display a
scatter plot where the values in vertical axis represent P,
and those in horizontal axis represent 10 x Pp,. Clearly, it
would be the best if the data is located in the upper left
corner (Pp =1 and Pp, = 0). Notice that, since the number
of data samples is much larger than that of valid peaks, Pj,
is very small even though the absolute number is consid-
erable. To take this point into account, we display the
scaled false alarm probability (10 x Pp,) in the horizontal
axis of Figures 8, 9, 10, 11, 12, 13 and 14.

As shown in Figure 8, CWT and thresholding techniques
show slightly better false alarm probability than the pro-
posed method but their detection performance is unsatis-
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Performance comparison (speckle noise ). | A, |

speckles are added.

factory. Whereas, the proposed method shows excellent
Ppwhile maintaining small Pp,.

Next, we consider a scenario where speckle noise is added
into GC data. In fact, this scenario models the instrumen-
tal noise from experimental devices or contamination due
to impurities. To this end, we added speckle noise to the
GC data from [1], which was described earlier in the 'Sim-
ulated GC data' section. In our experiments, we test three
cases where the number of speckles are | A, |, 2| A, |, and

T T
O  Proposed
y o LPF(0=0.1)
1D 0 LPF(0=03)
vV LPF (0=0.5)
N4 x  Hard-thresholding
*  Soft-thresholding
08l VA AV CWT i
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0.6 .
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*
0.4 .
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o+ #<
02w 4
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0 Il Il Il Il Il Il Il Il Il
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.
Figure 10

Performance comparison (speckle noise Il). 2| A, |

speckles are added.
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Performance comparison (speckle noise Ill). 4| A, |

speckles are added.

4| A, |, respectively. In addition, for some selected speckle

points, we add the random noise chosen from the distri-
bution N(E [r]; Var(r)). For each test case, we generate 10
random files. As shown in Figures 9, 10 and 11, we
observe the general tendency that P, is getting worse as
the noise level increases. The LPF method has a clear ben-
efit in Pp, over the thresholding method. However, as the
number of noise and the filter bandwidth increase, the
performance degradation of the LPF technique becomes

T T
L O Proposed
O LPF(0=0.1)
o : oo .
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Figure 12

Performance comparison (Gaussian noise I). 0.1%
Gaussian noise.
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Performance comparison (Gaussian noise II). 0.2%
Gaussian noise.

conspicuous. Whereas, the proposed method and CWT
are insensitive to the speckle noise and provide excellent
results. In particular, the proposed method is almost
insensitive to the noise (P, = 1 for all 30 cases) and shows

the best performance for all the tested cases.

Finally, we test a scenario where the GC data is corrupted
by Gaussian noise. This scenario models the thermal
noise of instrumental devices or temperature variations.
We added Gaussian noise into the GC data from [1]
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Performance comparison (Gaussian noise IllI). 0.5%
Gaussian noise.
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described in 'Simulated GC data' above. In our experi-
ments, we test three cases (0.1%, 0.2% and 0.5% of E
[l7|2] as noise power) and generate 10 random files for
each case. Due to the corruption of the whole data, as
shown in Figures 12, 13 and 14, the performance degrada-
tion is in general much severer than that in the speckle
type scenario. In particular, we observe degradation in P},
of CWT as well as Py, of the LPF method. In contrast, the
proposed method maintains the near perfect performance
at 0.1% and 0.2% noise additions. Even at 0.5% noise
addition, the proposed method outperforms all tested
methods, providing perfect detection performance and
small false alarm rates.

Discussion

In this work, we addressed the problem of detecting peaks
from noisy experimental data in a robust manner. The key
ingredients of our approach to achieving this goal are geo-
metric mean filtering (GMF), wavelet domain denoising,
and nonlinear signal amplification. The GMF technique
conducts the first round suppression of noise, and the
wavelet domain denoising then performs the filtering of
low-magnitude and high frequency noise. In the nonlin-
ear signal amplification stage, noise clean-up is achieved
by zeroing out the residual noise. From our experimental
studies on the GC data, we observed that the proposed
method shows near perfect peak detection and false alarm
performance and that it is the best among the compared
methods. Although the setup in this study is primarily for
the GC data (including the extended tests with Gaussian
and speckle-type contaminated GC data), we could
observe that the proposed method can be extended to
other types of experimental data as well. However, for the
detection of speckle-type peaks appearing in, for instance,
mass spectrometry experiments, the assumptions of the
proposed method (A.1) and A.3)) need to be modified. In
fact, regarding this extension, there are interesting direc-
tions worth pursuing. Our GMF relies only on data with
integer delays. Hence, the result might not be desirable
when the peak duration is very short, as in the case of
speckles. In this case, it might be better to use non-integer
delays by applying non-integer interpolated GMF. In
addition, when the contamination level is severe, it would
be a reasonable choice to use the cascade of the proposed
method and supervised learning by which additional reli-
ability might be inserted into the peak detection.

Conclusion

We have devised a computational method for detecting
signals appearing in the form of peaks from noisy experi-
mental observations. Compared with previous tech-
niques, the proposed method is unique in the sense that
(1) it requires much less efforts to tune algorithm param-
eters and (2) its false detection rate is significantly lower,
yet maintaining near perfect peak detection performance.

http://www.biomedcentral.com/1471-2105/10/378

We tested the proposed technique extensively with actual
data obtained from gas chromatography experiments. In
addition, in order to demonstrate the robustness of our
approach, we deliberately incorporated two types of noise
(speckle and Gaussian) into the original data and tested
our technique with the data. In all the experimental stud-
ies we conducted, the proposed technique outperformed
the alternatives we tried in terms of true and false positive
rates and sensitivity to parameters. Given the fact that
researchers are very much interested in isolating meaning-
ful signals accurately from their experimental data in an
automated and robust manner, we believe that the pro-
posed method can lead to a significant contribution to the
field.
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