
J O H N B O X A L L

ARDUINO
WORKSHOP
ARDUINO

WORKSHOP
A H A N D S - O N I N T R O D U C T I O N

W I T H 6 5 P R O J E C T S

B
O

X
A

LL
www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT ™

 “ I L I E F LAT .”

Th is book uses RepKover — a durab le b ind ing that won’t snap shut.

$29.95 ($31.95 CDN)

SHELVE IN:
HARDW

ARE/ELECTRONICS

A
R

D
U

IN
O

 W
O

R
K

S
H

O
P

A
R

D
U

IN
O

 W
O

R
K

S
H

O
P

L E A R N T H E B A S I C S ,L E A R N T H E B A S I C S ,
B U I L D T H E P R O J E C T S ,B U I L D T H E P R O J E C T S ,

C R E A T E Y O U R O W NC R E A T E Y O U R O W N

The Arduino is a cheap, flexible, open source micro-
controller platform designed to make it easy for hobbyists
to use electronics in homemade projects. With an almost

world around you.
countless ways to create devices that interact with the

unlimited range of input and output add-ons, sensors, indi-
cators, displays, motors, and more, the Arduino offers you

In Arduino Workshop, you’ll learn how these add-ons

You’ll also learn to build Arduino toys and games like:

 An electronic version of the classic six-sided die

 A binary quiz game that challenges your number
conversion skills

 A motorized remote control tank with collision detection
to keep it from crashing

Arduino Workshop will teach you the tricks and design
principles of a master craftsman. Whatever your skill level,
you’ll have fun as you learn to harness the power of the
Arduino for your own DIY projects.

reviews for years. Arduino Workshop is his first book.

A B O U T T H E A U T H O R

John Boxall (http://www.tronixstuff.com/) has been
writing Arduino tutorials, projects, and kit and accessory

 A handy tester that lets you check the voltage of any
single-cell battery

 A keypad-controlled lock that requires a secret code
to open

but quickly move on to coverage of various electronic
You’ll start off with an overview of the Arduino system

components and concepts. Hands-on projects throughout

work and how to integrate them into your own projects.

the book reinforce what you’ve learned and show you
how to apply that knowledge. As your understanding grows,
the projects increase in complexity and sophistication.

Among the book’s 65 projects are useful devices like:

on an LCD
 A digital thermometer that charts temperature changes

 A GPS logger that records data from your travels, which
can be displayed on Google Maps

ARDUINO WORKSHOP

A R D U I N O
W O R K S H O P

A H a n d s - O n I n t r o d u c t i o n
w i t h 6 5 P r o j e c t s

San Francisco

by John Boxa l l

ARDUINO WORKSHOP. Copyright © 2013 by John Boxall.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the
prior written permission of the copyright owner and the publisher.

Printed in USA

First printing

17 16 15 14 13 1 2 3 4 5 6 7 8 9

ISBN-10: 1-59327-448-3
ISBN-13: 978-1-59327-448-1

Publisher: William Pollock
Production Editor: Serena Yang
Cover Illustration: Charlie Wylie
Interior Design: Octopod Studios
Developmental Editor: William Pollock
Technical Reviewer: Marc Alexander
Copyeditor: Lisa Theobald
Compositor: Susan Glinert Stevens
Proofreader: Emelie Battaglia

Circuit diagrams made using Fritzing (http://fritzing.org/)

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
38 Ringold Street, San Francisco, CA 94103
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; www.nostarch.com

Library of Congress Cataloging-in-Publication Data
A catalog record of this book is available from the Library of Congress.

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to
the benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the infor-
mation contained in it.

For the two people who have always believed in me:
my mother and my dearest Kathleen

B R I E F C O N T E N T S

Acknowledgments . xix

Chapter 1: Getting Started . 1

Chapter 2: Exploring the Arduino Board and the IDE . 19

Chapter 3: First Steps . 33

Chapter 4: Building Blocks . 55

Chapter 5: Working with Functions . 95

Chapter 6: Numbers, Variables, and Arithmetic. 111

Chapter 7: Liquid Crystal Displays . 147

Chapter 8: Expanding Your Arduino . 161

Chapter 9: Numeric Keypads . 187

Chapter 10: Accepting User Input with Touchscreens . 195

Chapter 11: Meet the Arduino Family. 207

Chapter 12: Motors and Movement . 225

Chapter 13: Using GPS with Your Arduino . 257

Chapter 14: Wireless Data . 271

Chapter 15: Infrared Remote Control . 285

Chapter 16: Reading RFID Tags. 295

viii Brief Contents

Chapter 17: Data Buses . 307

Chapter 18: Real-time Clocks . 321

Chapter 19: The Internet . 337

Chapter 20: Cellular Communications . 349

Index . 365

C O N T E N T S I N D E T A I L

ACKNOWLEDGMENTS xix

1
GETTING STARTED 1
The Possibilities Are Endless . 2
Strength in Numbers. 6
Parts and Accessories . 6
Required Software . 7

Mac OS X . 7
Windows XP and Later . 11
Ubuntu Linux 9.04 and Later . 15

Safety. 18
Looking Ahead . 18

2
EXPLORING THE ARDUINO BOARD AND THE IDE 19
The Arduino Board. 19
Taking a Look Around the IDE . 25

The Command Area . 25
The Text Area . 26
The Message Window Area. 26

Creating Your First Sketch in the IDE. 27
Comments . 27
The Setup Function . 28
Controlling the Hardware. 28
The Loop Function . 28
Verifying Your Sketch . 30
Uploading and Running Your Sketch . 31
Modifying Your Sketch. 31

Looking Ahead . 31

3
FIRST STEPS 33
Planning Your Projects . 34
About Electricity . 34

Current . 34
Voltage . 35
Power . 35

Electronic Components . 35
The Resistor . 35
The Light-Emitting Diode . 39
The Solderless Breadboard. 41

Project #1: Creating a Blinking LED Wave .43
The Algorithm . 43
The Hardware . 43

x Contents in Detail

The Sketch . 43
The Schematic . 44
Running the Sketch . 45

Using Variables . 45
Project #2: Repeating with for Loops .46
Varying LED Brightness with Pulse-Width Modulation . 47
Project #3: Demonstrating PWM .49
More Electric Components. 49

The Transistor . 50
The Rectifier Diode . 50
The Relay . 51

Higher-Voltage Circuits . 52
Looking Ahead . 53

4
BUILDING BLOCKS 55
Using Schematic Diagrams . 56

Identifying Components . 56
Wires in Schematics . 58
Dissecting a Schematic . 59

The Capacitor . 60
Measuring the Capacity of a Capacitor . 60
Reading Capacitor Values . 61
Types of Capacitors. 61

Digital Inputs . 63
Project #4: Demonstrating a Digital Input. .65

The Algorithm . 65
The Hardware . 65
The Schematic . 65
The Sketch . 69
Modifying Your Sketch. 70
Understanding the Sketch. 70
Creating Constants with #define . 70
Reading Digital Input Pins . 70
Making Decisions with if . 71
Making More Decisions with if-then-else. 71

Boolean Variables . 72
Comparison Operators . 72
Making Two or More Comparisons . 73

Project #5: Controlling Traffic .74
The Goal . 74
The Algorithm . 74
The Hardware . 75
The Schematic . 75
The Sketch . 76
Running the Sketch . 79

Analog vs. Digital Signals . 79
Project #6: Creating a Single-Cell Battery Tester .80

The Goal . 81
The Algorithm . 81
The Hardware . 81

Contents in Detail xi

The Schematic . 81
The Sketch . 82

Doing Arithmetic with an Arduino . 83
Float Variables . 84
Comparison Operators for Calculations . 84

Improving Analog Measurement Precision with a Reference Voltage. 84
Using an External Reference Voltage . 85
Using the Internal Reference Voltage . 86

The Variable Resistor . 86
Piezoelectric Buzzers . 87

Piezo Schematic . 88
Project #7: Trying Out a Piezo Buzzer .88
Project #8: Creating a Quick-Read Thermometer .90

The Goal . 90
The Hardware . 90
The Schematic . 91
The Sketch . 91
Hacking the Sketch . 93

Looking Ahead . 93

5
WORKING WITH FUNCTIONS 95
Project #9: Creating a Function to Repeat an Action .96
Project #10: Creating a Function to Set the Number of Blinks .97
Creating a Function to Return a Value. 98
Project #11: Creating a Quick-Read Thermometer That Blinks the Temperature98

The Hardware . 99
The Schematic . 99
The Sketch . 100

Displaying Data from the Arduino in the Serial Monitor . 101
The Serial Monitor. 102

Project #12: Displaying the Temperature in the Serial Monitor .103
Debugging with the Serial Monitor . 105

Making Decisions with while Statements . 105
do-while. 105

Sending Data from the Serial Monitor to the Arduino . 106
Project #13: Multiplying a Number by Two .106
long Variables . 107
Project #14: Using long Variables .107
Looking Ahead . 109

6
NUMBERS, VARIABLES, AND ARITHMETIC 111
Generating Random Numbers . 112

Using Ambient Current to Generate a Random Number. 112
Project #15: Creating an Electronic Die .113

The Hardware . 114
The Schematic . 114
The Sketch . 115
Modifying the Sketch. 116

xii Contents in Detail

A Quick Course in Binary . 116
Byte Variables . 117

Increasing Digital Outputs with Shift Registers . 118
Project #16: Creating an LED Binary Number Display. .119

The Hardware . 119
Connecting the 74HC595 . 119
The Sketch . 121

Project #17: Making a Binary Quiz Game .122
The Algorithm . 122
The Sketch . 122

Arrays . 124
Defining an Array . 124
Referring to Values in an Array . 125
Writing to and Reading from Arrays . 125

Seven-Segment LED Displays . 126
Controlling the LED . 127

Project #18: Creating a Single-Digit Display. .129
The Hardware . 129
The Schematic . 129
The Sketch . 130
Displaying Double Digits . 131

Project #19: Controlling Two Seven-Segment LED Display Modules131
The Hardware . 131
The Schematic . 132
Modulo . 133

Project #20: Creating a Digital Thermometer .134
The Hardware . 134
The Sketch . 134

LED Matrix Display Modules . 135
The LED Matrix Schematic . 136
Making the Connections . 137

Bitwise Arithmetic. 139
The Bitwise AND Operator. 139
The Bitwise OR Operator . 139
The Bitwise XOR Operator . 140
The Bitwise NOT Operator. 140
Bitshift Left and Right . 140

Project #21: Creating an LED Matrix .141
Project #22: Creating Images on an LED Matrix .142
Project #23: Displaying an Image on an LED Matrix .144
Project #24: Animating an LED Matrix .145

The Sketch . 145
Looking Ahead . 146

7
LIQUID CRYSTAL DISPLAYS 147
Character LCD Modules . 148

Using a Character LCD in a Sketch . 149
Displaying Text . 150
Displaying Variables or Numbers . 151

Contents in Detail xiii

Project #25: Defining Custom Characters .152
Graphic LCD Modules . 153

Connecting the Graphic LCD . 154
Using the LCD. 155
Controlling the Display . 155

Project #26: Seeing the Text Functions in Action .155
Creating More Complex Display Effects . 156

Project #27: Creating a Temperature History Monitor .157
The Algorithm . 158
The Hardware . 158
The Sketch . 158
The Result. 160
Modifying the Sketch. 160

Looking Ahead . 160

8
EXPANDING YOUR ARDUINO 161
Shields . 162
ProtoShields . 164
Project #28: Creating a Custom Shield with Eight LEDs .165

The Hardware . 165
The Schematic . 165
The Layout of the ProtoShield Board . 166
The Design . 166
Soldering the Components . 167
Modifying the Custom Shield . 169

Expanding Sketches with Libraries . 169
Importing a Shield’s Libraries . 169

MicroSD Memory Cards . 173
Testing Your MicroSD Card . 174

Project #29: Writing Data to the Memory Card .175
Project #30: Creating a Temperature-Logging Device .177

The Hardware . 177
The Sketch . 177

Timing Applications with millis() and micros(). 179
Project #31: Creating a Stopwatch .181

The Hardware . 181
The Schematic . 181
The Sketch . 182

Interrupts. 184
Interrupt Modes. 184
Configuring Interrupts . 185
Activating or Deactivating Interrupts . 185

Project #32: Using Interrupts .185
The Sketch . 185

Looking Ahead . 186

xiv Contents in Detail

9
NUMERIC KEYPADS 187
Using a Numeric Keypad . 187

Wiring a Keypad . 188
Programming for the Keypad . 189
Testing the Sketch . 189

Making Decisions with switch-case . 190
Project #33: Creating a Keypad-Controlled Lock .190

The Sketch . 191
How It Works . 192
Testing the Sketch . 193

Looking Ahead . 193

10
ACCEPTING USER INPUT WITH TOUCHSCREENS 195
Touchscreens . 195

Connecting the Touchscreen . 196
Project #34: Addressing Areas on the Touchscreen. .197

The Hardware . 197
The Sketch . 197
Testing the Sketch . 198
Mapping the Touchscreen . 199

Project #35: Creating a Two-Zone On/Off Touch Switch. .200
The Sketch . 200
How It Works . 202
Testing the Sketch . 202

Project #36: Creating a Three-Zone Touch Switch. .202
The Touchscreen Map . 203
The Sketch . 203
How It Works . 205

Looking Ahead . 205

11
MEET THE ARDUINO FAMILY 207
Project #37: Creating Your Own Breadboard Arduino .208

The Hardware . 208
The Schematic . 211
Running a Test Sketch . 214

The Many Arduino Boards . 217
Arduino Uno. 219
Freetronics Eleven . 219
The Freeduino. 220
The Boarduino . 220
The Arduino Nano . 221
The Arduino LilyPad. 221
The Arduino Mega 2560 . 222
The Freetronics EtherMega . 222
The Arduino Due. 223

Looking Ahead . 224

Contents in Detail xv

12
MOTORS AND MOVEMENT 225
Making Small Motions with Servos. 225

Selecting a Servo . 226
Connecting a Servo. 227
Putting a Servo to Work. 227

Project #38: Building an Analog Thermometer .228
The Hardware . 228
The Schematic . 229
The Sketch . 229

Using Electric Motors . 231
The TIP120 Darlington Transistor. 231

Project #39: Controlling the Motor. .232
The Hardware . 232
The Schematic . 233
The Sketch . 234

Project #40: Building and Controlling a Tank Robot .235
The Hardware . 235
The Schematic . 238
The Sketch . 240

Sensing Collisions . 243
Project #41: Detecting Tank Bot Collisions with a Microswitch. .243

The Schematic . 243
The Sketch . 244

Infrared Distance Sensors . 246
Wiring It Up . 247
Testing the IR Distance Sensor. 247

Project #42: Detecting Tank Bot Collisions with IR Distance Sensor249
Ultrasonic Distance Sensors . 251

Connecting the Ultrasonic Sensor . 252
Using the Ultrasonic Sensor . 252
Testing the Ultrasonic Distance Sensor . 252

Project #43: Detecting Tank Bot Collisions with an Ultrasonic Distance Sensor254
The Sketch . 254

Looking Ahead . 256

13
USING GPS WITH YOUR ARDUINO 257
What Is GPS? . 258
Testing the GPS Shield . 259
Project #44: Creating a Simple GPS Receiver .261

The Hardware . 261
The Sketch . 261
Displaying the Position on the LCD . 262

Project #45: Creating an Accurate GPS-based Clock. .263
The Hardware . 263
The Sketch . 264

xvi Contents in Detail

Project #46: Recording the Position of a Moving Object over Time265
The Hardware . 265
The Sketch . 266
Displaying Locations on a Map. 268

Looking Ahead . 269

14
WIRELESS DATA 271
Using Low-cost Wireless Modules. 271
Project #47: Creating a Wireless Remote Control .272

The Hardware for the Transmitter Circuit . 273
The Transmitter Schematic . 273
The Hardware for the Receiver Circuit . 274
The Receiver Schematic . 274
The Transmitter Sketch . 275
The Receiver Sketch. 276

Using XBee Wireless Data Modules for Greater Range and Faster Speed 277
Project #48: Transmitting Data with an XBee .279

The Sketch . 279
Setting Up the Computer to Receive Data . 279

Project #49: Building a Remote Control Thermometer .281
The Hardware . 281
The Layout . 281
The Sketch . 282
Operation . 283

Looking Ahead . 284

15
INFRARED REMOTE CONTROL 285
What Is Infrared? . 285
Setting Up for Infrared . 286

The IR Receiver . 286
The Remote Control . 287
A Test Sketch . 287
Testing the Setup. 288

Project #50: Creating an IR Remote Control Arduino .289
The Hardware . 289
The Sketch . 289
Expanding the Sketch . 290

Project #51: Creating an IR Remote Control Tank .291
The Hardware . 291
The Sketch . 291

Looking Ahead . 293

16
READING RFID TAGS 295
Inside RFID Devices . 296
Testing the Hardware . 297

The Schematic . 297
Testing the Schematic . 297

Contents in Detail xvii

Project #52: Creating a Simple RFID Control System. .299
The Sketch . 299
How It Works . 300

Storing Data in the Arduino’s Built-in EEPROM. 301
Reading and Writing to the EEPROM . 302

Project #53: Creating an RFID Control with “Last Action” Memory303
The Sketch . 303
How It Works . 306

Looking Ahead . 306

17
DATA BUSES 307
The I2C Bus . 308
Project #54: Using an External EEPROM .309

The Hardware . 309
The Schematic . 310
The Sketch . 311
The Result. 312

Project #55: Using a Port Expander IC .313
The Hardware . 313
The Schematic . 313
The Sketch . 314

The SPI Bus . 315
Pin Connections . 316
Implementing the SPI . 316
Sending Data to an SPI Device . 317

Project #56: Using a Digital Rheostat. .318
The Hardware . 318
The Schematic . 318
The Sketch . 319

Looking Ahead . 320

18
REAL-TIME CLOCKS 321
Connecting the RTC Module . 322
Project #57: Adding and Displaying Time and Date with an RTC.322

The Hardware . 322
The Sketch . 323
How It Works . 325

Project #58: Creating a Simple Digital Clock .326
The Hardware . 326
The Sketch . 327
How It Works and Results . 330

Project #59: Creating an RFID Time-Clock System. .330
The Hardware . 331
The Sketch . 331
How It Works . 335

Looking Ahead . 336

xviii Contents in Detail

19
THE INTERNET 337
What You’ll Need . 337
Project #60: Building a Remote-Monitoring Station. .339

The Hardware . 339
The Sketch . 339
Troubleshooting . 341
How It Works . 342

Project #61: Creating an Arduino Tweeter .343
The Hardware . 343
The Sketch . 343

Controlling Your Arduino from the Web . 344
Project #62: Setting Up a Remote Control for Your Arduino .345

The Hardware . 345
The Sketch . 346
Controlling Your Arduino Remotely . 347

Looking Ahead . 348

20
CELLULAR COMMUNICATIONS 349
The Hardware . 350

Preparing the Power Shield . 351
Hardware Configuration and Testing. 352
Changing the Operating Frequency . 354

Project #63: Building an Arduino Dialer. .356
The Hardware . 356
The Schematic . 356
The Sketch . 357
How It Works . 358

Project #64: Building an Arduino Texter .358
The Sketch . 359
How It Works . 359

Project #65: Setting Up an SMS Remote Control .360
The Hardware . 360
The Schematic . 361
The Sketch . 361
How It Works . 363

Looking Ahead . 364

INDEX 365

A C K N O W L E D G M E N T S

First of all, a huge thank you to the Arduino team:
Massimo Banzi, David Cuartielles, Tom Igoe,
Gianluca Martino, and David Mellis. Without your
vision, thought, and hard work, none of this would
have been possible.

Many thanks to my technical reviewer Marc Alexander for his contribu-
tions, expertise, suggestions, support, thoughts, and long conversations,
and for having the tenacity to follow through with such a large project.

I also want to thank the following organizations for their images and
encouragement: adafruit industries, Agilent Technologies, Gravitech,
Freetronics, Oomlout, Seeed Studio, Sharp Corporation, and SparkFun.
Furthermore, a big thanks to Freetronics for the use of their excellent
hardware products. And thank you to all those who have contributed their
time making Arduino libraries, which makes life much easier for everyone.

Kudos and thanks to the Fritzing team for their wonderful open source
circuit schematic design tool, which I’ve used throughout this book.

xx Acknowledgments

And a thank you to the following people (in no particular order) from
whom I’ve received encouragement, inspiration and support: Iraphne
Childs, Limor Fried, Jonathan Oxer, Philip Lindsay, Nicole Kilah, Ken
Shirriff, Nathan Kennedy, David Jones, and Nathan Seidle.

Finally, thank you to everyone at No Starch Press, including Sondra
Silverhawk for suggesting the book; Serena Yang for her dedicated editing,
endless patience, and suggestions; and Bill Pollock for his support and guid-
ance and for convincing me that sometimes there is a better way to explain
something.

1
G E T T I N G S T A R T E D

Have you ever looked at some gadget and wondered
how it really worked? Maybe it was a remote control
boat, the system that controls an elevator, a vending
machine, or an electronic toy? Or have you wanted
to create your own robot or electronic signals for a model railroad, or per-
haps you’d like to capture and analyze weather data over time? Where and
how do you start?

The Arduino board (shown in Figure 1-1) can help you find some of
the answers to the mysteries of electronics in a hands-on way. The original
creation of Massimo Banzi and David Cuartielles, the Arduino system offers
an inexpensive way to build interactive projects, such as remote-controlled
robots, GPS tracking systems, and electronic games.

The Arduino project has grown exponentially since its introduction
in 2005. It’s now a thriving industry, supported by a community of people
united with the common bond of creating something new. You’ll find both
individuals and groups, ranging from interest groups and clubs to local
hackerspaces and educational institutions, all interested in toying with
the Arduino.

2 Chapter 1

Figure 1-1: The Arduino board

To get a sense of the variety of Arduino projects in the wild, you can
simply search the Internet. You’ll find a list of groups offering introductory
programs and courses with like-minded, creative people.

The Possibilities Are Endless
A quick scan through this book will show you that you can use the Arduino
to do something as simple as blinking a small light, or even something
more complicated, such as interacting with a cellular phone—and many
different things in between.

For example, have a look at Philip Lindsay’s device, shown in Figure 1-2.
It can receive text messages from cellular phones and display them on a
large sign for use in dance halls. This device uses an Arduino board and a
cellular phone shield to receive text messages from other phones (similar
to Project 65). The text message is sent to a pair of large, inexpensive dot-
matrix displays for everyone to see.

Figure 1-2: SMS (short message service) text marquee

Getting Started 3

You can purchase large display boards that are easy to interface
with an Arduino, so you don’t have to make your own display from
scratch. (For more information, visit http://www.labradoc.com/i/follower/
p/project-sms-text-scroller.)

How about creating a unique marriage proposal? Tyler Cooper wanted
an original way to propose to his girlfriend, so he built what he calls a
“reverse geocache box”—a small box that contained an engagement ring, as
shown in Figure 1-3. When the box was taken to a certain area (measured
by the internal GPS), it unlocked to reveal a romantic message and the
ring. You can easily reproduce this device using an Arduino board, a GPS
receiver, and an LCD module (as used in Chapter 13), with a small servo
motor that acts as a latch to keep the box closed until it’s in the correct
location. The code required to create this is quite simple—something you
could create in a few hours. The most time-consuming part is choosing the
appropriate box in which to enclose the system. (For more information,
visit http://learn.adafruit.com/reverse-geocache-engagement-box/.)

Figure 1-3: Marriage proposal via Arduino

Here’s another example. Kurt Schulz was interested in monitoring
the battery charge level of his moped. However, after realizing how simple
it is to work with Arduino, his project morphed into what he calls the
“Scooterputer”: a complete moped management system. The Scooterputer
can measure the battery voltage, plus it can display the speed, distance
traveled, tilt angle, temperature, time, date, GPS position, and more. It also
contains a cellular phone shield that can be controlled remotely, allow-
ing remote tracking of the moped and engine shutdown in case it’s stolen.
The entire system can be controlled with a small touchscreen, shown in

4 Chapter 1

Figure 1-4. Each feature can be considered a simple building block, and
anyone could create a similar system in a couple of weekends. (See http://
www.janspace.com/b2evolution/arduino.php/2010/06/26/scooterputer/.)

Figure 1-4: The Scooterputer display (courtesy of Kurt Schulz)

Then there’s John Sarik, who enjoys the popular Sudoku math puzzles;
he also likes working with Nixie numeric display tubes. With those two
drivers in mind, John created a huge 81-digit Sudoku game computer!
The user can play a full 9-by-9 game, with the Arduino in control of the
digits and checking for valid entries. Although this project might be consid-
ered a more advanced type, it is certainly achievable and the electronics are
not complex. The device is quite large and looks great mounted on a wall,
as shown in Figure 1-5. (See http://trashbearlabs.wordpress.com/2010/07/09/
nixie-sudoku/.)

The team at Oomlout even used the Arduino to create a TwypeWriter.
They fitted an Arduino board with an Ethernet shield interface connected
to the Internet, which searches Twitter for particular keywords. When a
keyword is found, the tweet is sent to an electric typewriter for printing. The
Arduino board is connected to the typewriter’s keyboard circuit, which
allows it to emulate a real person typing, as shown in Figure 1-6. (See
http://oomlout.co.uk/blog/twitter-monitoring-typewritter-twypwriter/.)

These are only a few random examples of what is possible using an
Arduino. You can create your own projects without much difficulty—and after
you’ve worked through this book, they are certainly not out of your reach.

Getting Started 5

Figure 1-5: Nixie tube Sudoku

Figure 1-6: The TwypeWriter

6 Chapter 1

Strength in Numbers
The Arduino platform increases in popularity every day. If you’re more of a
social learner and enjoy class-oriented situations, search the Web for “Cult
of Arduino” to see what people are making and to find Arduino-related
groups. Members of Arduino groups introduce the world of Arduino from an
artist’s perspective. Many group members work to create a small Arduino-
compatible board at the same time. These groups can be a lot of fun, intro-
duce you to interesting people, and let you share your Arduino knowledge
with others.

Parts and Accessories
As with any other electronic device, the Arduino is available from many
retailers that offer a range of products and accessories. When you’re
shopping, be sure to purchase the original Arduino, not a knock-off,
or you run the risk of receiving faulty or poorly performing goods; why
risk your project with an inferior board that could end up costing you
more in the long run? For a list of Arduino suppliers, visit http://arduino
.cc/en/Main/Buy/.

Here’s a list of current suppliers (in alphabetical order) that I recom-
mend for your purchases of Arduino-related parts and accessories:

x� Adafruit Industries (http://www.adafruit.com/)
x� DigiKey (http://www.digikey.com/)
x� Jameco Electronics (http://www.jameco.com/)
x� Little Bird Electronics (http://www.littlebirdelectronics.com/)
x� Newark (http://www.newark.com/)
x� nicegear (http://www.nicegear.co.nz/)
x� Oomlout (http://www.oomlout.co.uk/)
x� RadioShack (http://www.radioshack.com/)
x� RS Components (http://www.rs-components.com/)
x� SparkFun Electronics (http://www.sparkfun.com/)

As you’ll see in this book, I use several Arduino-compatible products
from Freetronics (http://www.freetronics.com/). However, you will find that
all the required parts are quite common and easily available from various
resellers.

But don’t go shopping yet. Take the time to read the first few chapters
to get an idea of what you’ll need so that you won’t waste money buying
unnecessary things immediately.

Getting Started 7

Required Software
You should be able to program your Arduino with just about any computer
using a piece of software called an integrated development environment (IDE).
To run this software, your computer should have one of the following oper-
ating systems installed:

x� Mac OS X or higher
x� Windows XP 32- or 64-bit, or higher
x� Linux 32- or 64-bit (Ubuntu or similar)

Now is a good time to download and install the IDE, so jump to the
heading that matches your operating system and follow the instructions.
Make sure you have or buy the matching USB cable for your Arduino from
the supplier as well. Even if you don’t have your Arduino board yet, you can
still download and explore the IDE. Because the IDE version number can
change quite rapidly, the number in this book may not match the current
version, but the instructions should still work.

N O T E Unfortunately, as this book went to press, there were issues with Windows 8 instal-
lations. If you have Windows 8, visit the Arduino Forum at http://arduino.cc/
forum/index.php/topic,94651.15.html for guidance and discussion.

Mac OS X
In this section, you’ll find instructions for downloading and configuring
the Arduino IDE in Mac OS X.

Installing the IDE

To install the IDE on your Mac, follow these instructions:

1. Using a web browser such as Safari, visit the software download page
located at http://arduino.cc/en/Main/Software/, as shown in Figure 1-7.

Figure 1-7: The IDE download page in Safari

8 Chapter 1

2. Click the Mac OS X link. The file will start downloading, and it will
appear in the Downloads window shown in Figure 1-8.

Figure 1-8: File download is complete.

3. Once it’s finished downloading, double-click the file to start the instal-
lation process. You will then be presented with the window shown in
Figure 1-9.

Figure 1-9: Your new Arduino IDE folder

N O T E The third file icon shown in Figure 1-9 needs to be installed only if you have an
Arduino board older than the current Uno.

Getting Started 9

4. Drag the Arduino icon over the Applications folder and release the
mouse button. A temporary status window will appear as the file is
copied.

5. Now connect your Arduino to your Mac with the USB cable. After a
moment, the dialog shown in Figure 1-10 will appear.

Figure 1-10: A new Arduino board is detected. Your
dialog may read Uno instead of Eleven.

6. Click Network Preferences..., and then click Apply in the Network box.
You can ignore the “not configured” status message.

Setting Up the IDE

Once you have downloaded the IDE, use the following instructions to open
and configure the IDE:

1. Open the Applications folder in Finder (shown in Figure 1-11) and
double-click the Arduino icon.

Figure 1-11: Your Applications folder

2. A window may appear warning you about opening a web app. If it does,
click Open to continue. You will then be presented with the IDE, as
shown in Figure 1-12.

10 Chapter 1

Figure 1-12: The IDE in Mac OS X

3. You’re almost there—just two more things to do before your Arduino
IDE is ready to use. First, you need to tell the IDE which type of socket
the Arduino is connected to. Select Tools�Serial Port and select the
/dev/tty.usbmodem1d11 option, as shown in Figure 1-13.

Figure 1-13: Selecting the USB port

4. The final step is to tell the IDE which Arduino board you have connected.
This is crucial, since Arduino boards do differ. For example, if you have
the most common board, the Uno, then select Tools�Board�Arduino
Uno, as shown in Figure 1-14. The differences in Arduino boards are
explained in more detail in Chapter 11.

Now your hardware and software are ready to work for you. Next, move
on to “Safety” on page 18.

Getting Started 11

Figure 1-14: Selecting the correct Arduino board

Windows XP and Later
In this section, you’ll find instructions for downloading the IDE, installing
drivers, and configuring the IDE in Windows.

Installing the IDE

To install the Arduino IDE for Windows, follow these instructions:

1. Using a web browser such as Firefox, visit the software download page
located at http://arduino.cc/en/Main/Software/, as shown in Figure 1-15.

Figure 1-15: The IDE download page in Windows Firefox

12 Chapter 1

2. Click the Windows link, and the dialog shown in Figure 1-16 will appear.
Select Open with Windows Explorer, and then click OK. The file will
start to download, as shown in Figure 1-17.

Figure 1-16: Downloading the file

Figure 1-17: Firefox shows the progress of your download.

3. Once the download is complete, double-click the file, and the window
shown in Figure 1-18 will appear.

Figure 1-18: The IDE package

Getting Started 13

4. Copy the folder named arduino-0022 (or something similar) to the loca-
tion where you store your applications. Once the copying is finished,
locate the folder and open it to reveal the Arduino application icon, as
shown in Figure 1-19. You may wish to copy the icon and place a short-
cut on the desktop for easier access in the future.

Figure 1-19: Your IDE folder with the Arduino application icon selected

Installing Drivers

The next task is to install the drivers for your Arduino board’s USB interface.

1. Connect your Arduino to your PC with the USB cable. After a few
moments an error message will be displayed, which will say something
like “Device driver software not successfully installed.” Just close that
dialog or balloon.

2. Navigate to the Windows Control Panel. Open the Device Manager and
scroll down until you see the Arduino, as shown in Figure 1-20.

Figure 1-20: The Device Manager

14 Chapter 1

3. Right-click Arduino Uno under Other Devices and select Update Driver
Software. Then, select the Browse my computer for driver soft ware
option that appears in the next dialog. Another Browse For Folder dialog
will appear; click Browse, and navigate to the drivers folder in the newly
installed Arduino software folder (shown in Figure 1-21). Click OK.

Figure 1-21: Locating the drivers folder

4. Click Next in the dialog that follows. Windows may present a message
stating that it “cannot verify the publisher of the driver software.” Click
Install this software anyway. After a short wait, Windows will tell you
that the driver is installed and the COM port number the Arduino is
connected to, as shown in Figure 1-22.

Figure 1-22: The drivers have been updated successfully.

Getting Started 15

Setting Up the IDE

Okay, we’re almost there—just two more things to do to finish setting up
the IDE.

1. Open the Arduino IDE. You need to tell the IDE which type of socket
the Arduino is connected to by selecting Tools�Serial Port and
selecting the COM port number that appeared in the Update Driver
Software window.

2. The final step is to tell the IDE which Arduino board we have connected.
This is crucial, as the Arduino boards do differ. For example, if you
have the Uno, select Tools�Board�Arduino Uno. The differences in
Arduino boards are explained in more detail in Chapter 11.

Now that your Arduino IDE is set up, you can move on to “Safety” on
page 18.

Ubuntu Linux 9.04 and Later
If you are running Ubuntu Linux, here are instructions for downloading
and setting up the Arduino IDE.

Installing the IDE

Use the following instructions to install the IDE:

1. Using a web browser such as Firefox, visit the software download page
located at http://arduino.cc/en/Main/Software/, as shown in Figure 1-23.

Figure 1-23: The IDE download page in Ubuntu Firefox

16 Chapter 1

2. Click the Linux 32-bit or 64-bit link, depending on your system. When
the dialog in Figure 1-24 appears, select Open with Archive Manager
and click OK.

Figure 1-24: Downloading the file

3. After the file has downloaded, it will be displayed in the Archive
Manager, as shown in Figure 1-25. Copy the arduino-0022 folder
(or something similar) to your usual application or Home folder.

Figure 1-25: The IDE package

Setting Up the IDE

Next, you’ll configure the IDE.

1. Connect your Arduino to your PC with the USB cable. At this
point you want to run the Arduino IDE, so locate the arduino-0022
folder you copied earlier and double-click the arduino file that’s
selected in Figure 1-26.

Getting Started 17

Figure 1-26: Your Arduino IDE folder with the arduino file selected

2. If the dialog shown in Figure 1-27 appears, click Run, and you will be
presented with the IDE, as shown in Figure 1-28.

Figure 1-27: Granting permission to run the IDE

Figure 1-28: The IDE in Ubuntu

18 Chapter 1

3. Now that the IDE is running, we need to tell it which type of socket the
Arduino is connected to. Select Tools�Serial Port and select the /dev/
ttyACMx port, where x is a single digit (there should be only one port
with a name like this).

4. Next, tell the IDE which Arduino you have connected. This is crucial,
as Arduino boards do differ. For example, if you have the Uno, select
Tools�Board�Arduino Uno. The differences in Arduino boards are
explained in more detail in Chapter 11.

Now your hardware and software are ready to work for you.

Safety
As with any hobby or craft, it’s up to you to take care of yourself and those
around you. As you’ll see in this book, I discuss working with basic hand
tools, battery-powered electrical devices, sharp knives, and cutters—and
sometimes soldering irons. At no point in your projects should you work
with the mains current. Leave that to a licensed electrician who is trained
for such work. Remember that contacting the mains current will kill you.

Looking Ahead
You’re about to embark on a fun and interesting journey, and you’ll be cre-
ating things you may never have thought possible. You’ll find 65 Arduino
projects in this book, ranging from the very simple to the relatively complex.
All are designed to help you learn and make something useful. So let’s go!

2
E X P L O R I N G T H E A R D U I N O B O A R D

A N D T H E I D E

In this chapter you’ll explore the Arduino board as
well as the IDE software that you’ll use to create and
upload Arduino sketches (Arduino’s name for its pro-
grams) to the Arduino board itself. You’ll learn the
basic framework of a sketch and some basic functions
that you can implement in a sketch, and you’ll create
and upload your first sketch.

The Arduino Board
What exactly is Arduino? According to the Arduino website (http://www.
arduino.cc/), it is

an open-source electronics prototyping platform based on flex-
ible, easy-to-use hardware and software. It’s intended for artists,
designers, hobbyists, and anyone interested in creating inter-
active objects or environments.

20 Chapter 2

In simple terms, the Arduino is a tiny computer system that can be pro-
grammed with your instructions to interact with various forms of input and
output. The current Arduino board model, the Uno, is quite small in size
compared to the average human hand, as you can see in Figure 2-1.

Figure 2-1: An Arduino Uno is quite small.

Although it might not look like much to the new observer, the Arduino
system allows you to create devices that can interact with the world around
you. By using an almost unlimited range of input and output devices, sen-
sors, indicators, displays, motors, and more, you can program the exact
interactions required to create a functional device. For example, artists
have created installations with patterns of blinking lights that respond to
the movements of passers-by, high school students have built autonomous
robots that can detect an open flame and extinguish it, and geographers
have designed systems that monitor temperature and humidity and trans-
mit this data back to their offices via text message. In fact, you’ll find an
almost infinite number of examples with a quick search on the Internet.

Now let’s move on and explore our Arduino Uno hardware (in other
words, the “physical part”) in more detail and see what we have. Don’t worry
too much about understanding what you see here, because all these things
will be discussed in greater detail in later chapters.

Exploring the Arduino Board and the IDE 21

Let’s take a quick tour of the Uno. Starting at the left side of the board,
you’ll see two connectors, as shown in Figure 2-2.

Figure 2-2: The USB and power connectors

On the far left is the Universal Serial Bus (USB) connector. This con-
nects the board to your computer for three reasons: to supply power to the
board, to upload your instructions to the Arduino, and to send data to and
receive it from a computer. On the right is the power connector. Through
this connector, you can power the Arduino with a standard mains power
adapter.

At the lower middle is the heart of the board: the microcontroller, as
shown in Figure 2-3.

Figure 2-3: The microcontroller

The microcontroller is the “brains” of the Arduino. It is a tiny computer
that contains a processor to execute instructions, includes various types of
memory to hold data and instructions from our sketches, and provides vari-
ous avenues of sending and receiving data. Just below the microcontroller
are two rows of small sockets, as shown in Figure 2-4.

22 Chapter 2

Figure 2-4: The power and analog sockets

The first row offers power connections and the ability to use an exter-
nal RESET button. The second row offers six analog inputs that are used
to measure electrical signals that vary in voltage. Furthermore, pins A4
and A5 can also be used for sending data to and receiving it from other
devices. Along the top of the board are two more rows of sockets, as shown
in Figure 2-5.

Figure 2-5: The digital input/output pins

Sockets (or pins) numbered 0 to 13 are digital input/output (I/O)
pins. They can either detect whether or not an electrical signal is present
or generate a signal on command. Pins 0 and 1 are also known as the serial
port, which is used to send and receive data to other devices, such as a com-
puter via the USB connector circuitry. The pins labeled with a tilde (~) can
also generate a varying electrical signal, which can be useful for such things
as creating lighting effects or controlling electric motors.

Next are some very useful devices called light-emitting diodes (LEDs); these
very tiny devices light up when a current passes through them. The Arduino
board has four LEDs: one on the far right labeled ON, which indicates when
the board has power, and three in another group, as shown in Figure 2-6.

The LEDs labeled TX and RX light up when data is being transmitted
or received between the Arduino and attached devices via the serial port
and USB. The L LED is for your own use (it is connected to the digital I/O
pin number 13). The little black square part to the left of the LEDs is a tiny
microcontroller that controls the USB interface that allows your Arduino to
send data to and receive it from a computer, but you don’t generally have to
concern yourself with it.

Exploring the Arduino Board and the IDE 23

Figure 2-6: The onboard LEDs

And, finally, the RESET button is shown in Figure 2-7.

Figure 2-7: The RESET button

As with a normal computer, sometimes things can go wrong with the
Arduino, and when all else fails, you might need to reset the system and
restart your Arduino. This simple RESET button on the board (Figure 2-7)
is used to restart the system to resolve these problems.

One of the great advantages of the Arduino system is its ease of
expandability—that is, it’s easy to add more hardware functions. The two
rows of sockets along each side of the Arduino allow the connection of a
shield, another circuit board with pins that allow it to plug into the Arduino.
For example, the shield shown in Figure 2-8 contains an Ethernet interface
that allows the Arduino to communicate over networks and the Internet,
with plenty of space for custom circuitry.

Notice how the Ethernet shield also has rows of sockets. These enable
you to insert one or more shields on top. For example, Figure 2-9 shows that
another shield with a large numeric display, temperature sensor, extra data
storage space, and a large LED has been inserted.

Note that you do need to remember which shield uses which individual
inputs and outputs to ensure that “clashes” do not occur. You can also pur-
chase completely blank shields that allow you to add your own circuitry.
This will be explained further in Chapter 8.

24 Chapter 2

Figure 2-8: Arduino Ethernet interface shield

Figure 2-9: Numeric display and temperature shield

Exploring the Arduino Board and the IDE 25

The companion to the Arduino hardware is the software, a collection of
instructions that tell the hardware what to do and how to do it. Two types of
software can be used: The first is the integrated development environment
(IDE), which is discussed in this chapter, and the second is the Arduino
sketch you create yourself.

The IDE software is installed on your personal computer and is used to
compose and send sketches to the Arduino board.

Taking a Look Around the IDE
As shown in Figure 2-10, the Arduino IDE resembles a simple word processor.
The IDE is divided into three main areas: the command area, the text area,
and the message window area.

Menu Items
Icons

Text Area

Message
Window Area

Title BarCommand
Area

Figure 2-10: The Arduino IDE

The Command Area
The command area is shown at the top of Figure 2-10 and includes the
title bar, menu items, and icons. The title bar displays the sketch’s filename
(sketch_mar22a), as well as the version of the IDE (Arduino 1.0). Below this
is a series of menu items (File, Edit, Sketch, Tools, and Help) and icons, as
described next.

26 Chapter 2

Menu Items

As with any word processor or text editor, you can click one of the menu
items to display its various options.

File Contains options to save, load, and print sketches; a thorough set
of example sketches to open; as well as the Preferences submenu

Edit Contains the usual copy, paste, and search functions common to
any word processor

Sketch Contains the function to verify your sketch before uploading
to a board, and some sketch folder and import options

Tools Contains a variety of functions as well as the commands to
select the Arduino board type and USB port

Help Contains links to various topics of interest and the version of
the IDE

The Icons

Below the menu toolbar are six icons. Mouse over each icon to display its
name. The icons, from left to right, are as follows:

Verify Click this to check that the Arduino sketch is valid and doesn’t
contain any programming mistakes.

Upload Click this to verify and then upload your sketch to the
Arduino board.

New Click this to open a new blank sketch in a new window.

Open Click this to open a saved sketch.

Save Click this to save the open sketch. If the sketch doesn’t have a
name, you will be prompted to create one.

Serial Monitor Click this to open a new window for use in sending
and receiving data between your Arduino and the IDE.

The Text Area
The text area is shown in the middle of Figure 2-10; this is where you’ll create
your sketches. The name of the current sketch is displayed in the tab at the
upper left of the text area. (The default name is the current date.) You’ll
enter the contents of your sketch here as you would in any text editor.

The Message Window Area
The message window area is shown at the bottom of Figure 2-10. Messages
from the IDE appear in the black area. The messages you see will vary and
will include messages about verifying sketches, status updates, and so on.

Exploring the Arduino Board and the IDE 27

At the bottom right of the message area, you should see the name
of your Arduino board type as well as its connected USB port—Arduino
Duemilanove w/ATmega328 on COM6 in this case.

Creating Your First Sketch in the IDE
An Arduino sketch is a set of instructions that you cre-
ate to accomplish a particular task; in other words, a
sketch is a program. In this section you’ll create and
upload a simple sketch that will cause the Arduino’s
LED (shown in Figure 2-11) to blink repeatedly, by
turning it on and then off for 1 second intervals.

N O T E Don’t worry too much about the specific commands in the
sketch we’re creating here. The goal is to show you how easy it
is to get the Arduino to do something so that you’ll keep read-
ing when you get to the harder stuff.

To begin, connect your Arduino to the computer with the USB cable.
Then open the IDE, choose Tools�Serial Port, and make sure the USB
port is selected. This ensures that the Arduino board is properly connected.

Comments
First, enter a comment as a reminder of what your sketch will be used for.
A comment is a note of any length in a sketch, written for the user’s benefit.
Comments in sketches are useful for adding notes to yourself or others, for
entering instructions, or for noting miscellaneous details. When program-
ming your Arduino (creating sketches), it’s a good idea to add comments
regarding your intentions; these comments can prove useful later when
you’re revisiting a sketch.

To add a comment on a single line, enter two forward slashes and then
the comment, like this:

// Blink LED sketch by Mary Smith, created 09/09/12

The two forward slashes tell the IDE to ignore the text that follows
when verifying a sketch. (As mentioned earlier, when you verify a sketch,
you’re asking the IDE to check that everything is written properly with
no errors.)

To enter a comment that spans two or more lines, enter the characters
/* on a line before the comment, and then end the comment with the char-
acters */ on the following line, like this:

/*
Arduino Blink LED Sketch
by Mary Smith, created 09/09/12
*/

Figure 2-11: The
LED on the Arduino
board, next to the
capital L

28 Chapter 2

As with the two forward slashes that precede a single line comment, the
/* and */ tell the IDE to ignore the text that they bracket.

Enter a comment describing your Arduino sketch using one of these
methods, and then save your sketch by choosing File�Save As. Enter a
short name for your sketch (such as blinky), and then click OK.

The default filename extension for Arduino sketches is .ino, and the
IDE should add this automatically. The name for your sketch should be, in
this case, blinky.ino, and you should be able to see it in your Sketchbook.

The Setup Function
The next stage in creating any sketch is to add the void setup() function.
This function contains a set of instructions for the Arduino to execute once
only, each time it is reset or turned on. To create the setup function, add the
following lines to your sketch, after the comments:

void setup()
{

}

Controlling the Hardware
Our program will blink the user LED on the Arduino. The user LED is
connected to the Arduino’s digital pin 13. A digital pin can either detect
an electrical signal or generate one on command. In this project, we’ll
generate an electrical signal that will light the LED. This may seem a little
complicated, but you’ll learn more about digital pins in future chapters. For
now, just continue with creating the sketch.

Enter the following into your sketch between the braces ({ and }):

 pinMode(13, OUTPUT); // set digital pin 13 to output

The number 13 in the listing represents the digital pin you’re addressing.
You’re setting this pin to OUTPUT, which means it will generate (output) an elec-
trical signal. If you wanted it to detect an incoming electrical signal, then you
would use INPUT instead. Notice that the function pinMode() ends with a semi-
colon (;). Every function in your Arduino sketches will end with a semicolon.

Save your sketch again to make sure that you don’t lose any of your work.

The Loop Function
Remember that our goal is to make the LED blink repeatedly. To do this,
we’ll create a loop function to tell the Arduino to execute an instruction over
and over until the power is shut off or someone presses the RESET button.

Enter the code shown in boldface after the void setup() section in the
following listing to create an empty loop function. Be sure to end this new
section with another brace (}), and then save your sketch again.

Exploring the Arduino Board and the IDE 29

/*
Arduino Blink LED Sketch
by Mary Smith, created 09/09/12
*/

void setup()
{
 pinMode(13, OUTPUT); // set digital pin 13 to output
}
void loop()
{
 // place your main loop code here:
}

W A R N I N G The Arduino IDE does not automatically save sketches, so save your work frequently!

Next, enter the actual functions into void loop() for the Arduino to
execute.

Enter the following between the loop function’s braces, and then click
Verify to make sure that you’ve entered everything correctly:

 digitalWrite(13, HIGH); // turn on digital pin 13
 delay(1000); // pause for one second
 digitalWrite(13, LOW); // turn off digital pin 13
 delay(1000); // pause for one second

Let’s take this all apart. The digitalWrite() function controls the voltage
that is output from a digital pin: in this case, pin 13 to the LED. By setting
the second parameter of this function to HIGH, a “high” digital voltage is out-
put; then current will flow from the pin and the LED will turn on. (If you
were to set this parameter to LOW, then the current flowing through the LED
would stop.)

With the LED turned on, the light pauses for 1 second with delay(1000).
The delay() function causes the sketch to do nothing for a period of time—
in this case, 1,000 milliseconds, or 1 second.

Next, we turn off the voltage to the LED with digitalWrite(13, LOW);.
Finally, we pause again for 1 second while the LED is off, with delay(1000);.

The completed sketch should look like this:

/*
 Arduino Blink LED Sketch
 by Mary Smith, created 09/09/12
*/

void setup()
{
 pinMode(13, OUTPUT); // set digital pin 13 to output
}

30 Chapter 2

void loop()
{
 digitalWrite(13, HIGH); // turn on digital pin 13
 delay(1000); // pause for one second
 digitalWrite(13, LOW); // turn off digital pin 13
 delay(1000); // pause for one second
}

Before you do anything further, save your sketch!

Verifying Your Sketch
When you verify your sketch, you ensure that it has been written correctly
in a way that the Arduino can understand. To verify your complete sketch,
click Verify in the IDE and wait a moment. Once the sketch has been veri-
fied, a note should appear in the message window, as shown in Figure 2-12.

Figure 2-12: The sketch has been verified.

This “Done compiling” message tells you that the sketch is okay to upload
to your Arduino. It also shows how much memory it will use (1,076 bytes in
this case) of the total available on the Arduino (32,256 bytes).

But what if your sketch isn’t okay? Say, for example, you forgot to add a
semicolon at the end of the second delay(1000) function. If something is bro-
ken in your sketch, then when you click Verify, the message window should
display a verification error message similar to the one shown in Figure 2-13.

Figure 2-13: The message window with a verification error

Exploring the Arduino Board and the IDE 31

The message tells you that the error occurs in the void loop function,
lists the line number of the sketch where the IDE thinks the error is located
(blinky:16, or line 16 of your blinky sketch), and displays the error itself (the
missing semicolon, error: expected ';' before '}' token). Furthermore, the
IDE should also highlight in yellow the location of the error or a spot just
after it. This helps you easily locate and rectify the mistake.

Uploading and Running Your Sketch
Once you’re satisfied that your sketch has been entered correctly, save it,
ensure that your Arduino board is connected, and click Upload in the IDE.
The IDE may verify your sketch again and then upload it to your Arduino
board. During this process, the TX/RX LEDs on your board (shown in
Figure 2-6) should blink, indicating that information is traveling between
the Arduino and your computer.

Now for the moment of truth: Your Arduino should start running the
sketch. If you’ve done everything correctly, then the LED should blink on
and off once every second!

Congratulations. You now know the basics of how to enter, verify, and
upload an Arduino sketch.

Modifying Your Sketch
After running your sketch, you may want to change how it operates, by, for
example, adjusting the on or off delay time for the LED. Because the IDE
is a lot like a word processor, you can open your saved sketch, adjust the
values, and then save your sketch again and upload it to the Arduino. For
example, to increase the rate of blinking, change both delay functions to
make the LEDs blink for one-quarter of a second by adjusting the delay to 250
like this:

 delay(250); // pause for one-quarter of one second

Then upload the sketch again. The LED should now blink faster, for
one-quarter of a second each time.

Looking Ahead
Armed with your newfound knowledge of how to enter, edit, save, and
upload Arduino sketches, you’re ready for the next chapter, where you’ll
learn how to use more functions, implement good project design, construct
basic electronic circuits, and do much more.

3
F I R S T S T E P S

In this chapter you will

x� Learn the concepts of good project design
x� Learn the basic properties of electricity
x� Be introduced to the resistor, light-emitting diode (LED), transistor,

rectifier diode, and relay
x� Use a solderless breadboard to construct circuits
x� Learn how integer variables, for loops, and digital outputs can be used

to create various LED effects

Now you’ll begin to bring your Arduino to life. As you will see, there is
more to working with Arduino than just the board itself. You’ll learn how
to plan projects in order to make your ideas a reality and then move on to
a quick primer on electricity. Electricity is the driving force behind every-
thing we do in this book, and it’s important to have a solid understanding
of the basics in order to create your own projects. You’ll also take a look at
the components that help bring real projects to life. Finally, you’ll examine
some new functions that are the building blocks for your Arduino sketches.

34 Chapter 3

Planning Your Projects
When starting your first few projects, you might be tempted to write your
sketch immediately after you’ve come up with a new idea. But before you
start writing, a few basic preparatory steps are in order. After all, your
Arduino board isn’t a mind-reader; it needs precise instructions, and even
if these instructions can be executed by the Arduino, the results may not be
what you expected if you overlooked even a minor detail.

Whether you are creating a project that simply blinks a light or an auto-
mated model railway signal, a detailed plan is the foundation of success.
When designing your Arduino projects, follow these basic steps:

1. Define your objective. Determine what you want to achieve.
2. Write your algorithm. An algorithm is a set of instructions that describes

how to accomplish your project. Your algorithm will list the steps neces-
sary for you to achieve your project’s objective.

3. Select your hardware. Determine how it will connect to the Arduino.
4. Write your sketch. Create your initial program that tells the Arduino

what to do.
5. Wire it up. Connect your hardware, circuitry, and other items to the

Arduino board.
6. Test and debug. Does it work? During this stage, you identify errors and

find their causes, whether in the sketch, hardware, or algorithm.

The more time you spend planning your project, the easier time you’ll
have during the testing and debugging stage.

N O T E Even well-planned projects sometimes fall prey to feature creep. Feature creep occurs
when people think up new functionality that they want to add to a project and then
try to force new elements into an existing design. When you need to change a design,
don’t try to “slot in” or modify it with 11th-hour additions. Instead, start fresh by
redefining your objective.

About Electricity
Let’s spend a bit of time discussing electricity, since you’ll soon be building
electronic circuits with your Arduino projects. In simple terms, electricity is a
form of energy that we can harness and convert into heat, light, movement,
and power. Electricity has three main properties that will be important to
us as we build projects: current, voltage, and power.

Current
The flow of electrical energy through a circuit is called the current. Electrical
current flows through a circuit from the positive side of a power source,
such as a battery, to the negative side of the power source. This is known
as direct current (DC). For the purposes of this book, we will not deal with

First Steps 35

AC (alternating current). In some circuits, the negative side is called ground
(GND). Current is measured in amperes or “amps” (A). Small amounts
of current are measured in milliamps (mA), where 1,000 milliamps equal
1 amp.

Voltage
Voltage is a measure of the difference in potential energy between a circuit’s
positive and negative ends. This is measured in volts (V). The greater the
voltage, the faster the current moves through a circuit.

Power
Power is a measurement of the rate at which an electrical device converts
energy from one form to another. Power is measured in watts (W). For
example, a 100 W light bulb is much brighter than a 60 W bulb because
the higher-wattage bulb converts more electrical energy into light.

A simple mathematical relationship exists among voltage, current,
and power:

Power (W) = Voltage (V) × Current (A)

Electronic Components
Now that you know a little bit about the basics of electricity, let’s look at
how it interacts with various electronic components and devices. Electronic
components are the various parts that control electric current in a circuit to
make our designs a reality. Just as the various parts of a car work together
to provide fuel, power, and mobility to allow us to drive, electronic compo-
nents work together to control and harness electricity to help us create use-
ful devices.

Throughout this book, I’ll explain specialized components as we
use them. The following sections describe some of the fundamental
components.

The Resistor
Various components, such as the Arduino’s LED, require only a small
amount of current to function—usually around 10 mA. When the LED
receives excess current, it converts the excess to heat—too much of which
can kill an LED. To reduce the flow of current to components such as
LEDs, we can add a resistor between the voltage source and the component.
Current flows freely along normal copper wire, but when it encounters a
resistor, its movement is slowed. Some current is converted into a small
amount of heat energy, which is proportional to the value of the resistor.
Figure 3-1 shows an example of commonly used resistors.

36 Chapter 3

Figure 3-1: Typical resistors

Resistance

The level of resistance can be either fixed or variable. Resistance is mea-
sured in ohms (:) and can range from zero to thousands of ohms (kiloohms,
or k :) to millions of ohms (megohms, or M :).

Reading Resistance Values

Resistors are very small, so their resistance value usually cannot be printed
on the components themselves. Although you can test resistance with a mul-
timeter, you can also read resistance directly from a physical resistor, even
without numbers. One common way to show the component’s resistance is
with a series of color-coded bands, read from left to right, as follows:

First band Represents the first digit of the resistance
Second band Represents the second digit of the resistance
Third band Represents the multiplier (for four-band resistors) or the
third digit (for five-band resistors)
Fourth band Represents the multiplier for five-band resistors
Fifth band Shows the tolerance (accuracy)

Table 3-1 lists the colors of resistors and their corresponding values.
The fifth band represents a resistor’s tolerance. This is a measure of the

accuracy of the resistor. Because it is difficult to manufacture resistors with
exact values, you select a margin of error as a percentage when buying a
resistor. A brown band indicates 1 percent, gold indicates 5 percent, and
silver indicates 10 percent tolerance.

Figure 3-2 shows a resistor diagram. The yellow, violet, and orange resis-
tance bands are read as 4, 7, and 3, respectively, as listed in Table 3-1. These
values translate to 47,000 :, more commonly read as 47 k:.

First Steps 37

yellow orange

violet brown

Figure 3-2: Example resistor diagram

Table 3-1: Values of Bands Printed on a Resistor, in Ohms

Color Ohms

Black 0
Brown 1
Red 2
Orange 3
Yellow 4
Green 5
Blue 6
Violet 7
Gray 8
White 9

Chip Resistors

Surface-mount chip resistors display a
printed number and letter code, as shown
in Figure 3-3, instead of color stripes. The first
two digits represent a single number, and the
third digit represents the number of zeros to
follow that number. For example, the resis-
tor in Figure 3-3 has a value of 10,000 :, or
10 k:.

N O T E If you see a number and letter code on small
chip resistors (such as 01C), google EIA-96 code
calculator for lookup tables on that more involved
code system.

Figure 3-3: Example of a
surface-mount resistor

38 Chapter 3

Multimeters

A multimeter is an incredibly useful and relatively inexpensive piece of test
equipment that can measure voltage, resistance, current, and more. For
example, Figure 3-4 shows a multimeter measuring a resistor.

Figure 3-4: Multimeter measuring a 560-ohm 1 percent
tolerance resistor

If you are colorblind, a multimeter is essential. As with other good tools,
purchase your multimeter from a reputable retailer instead of fishing about
on the Internet for the cheapest one you can find.

Power Rating

The resistor’s power rating is a measurement of the power, in watts, that it
will tolerate before overheating or failing. The resistors shown in Figure 3-1
are 1/4-watt resistors, which are the most commonly used resistors with the
Arduino system.

When you’re selecting a resistor, consider the relationship among
power, current, and voltage. The greater the current and/or voltage, the
greater the resistor’s power.

Usually, the greater a resistor’s power rating, the greater its physical
size. For example, the resistor shown in Figure 3-5 is a 5-watt resistor, which
measures 26 mm long by 7.5 mm wide.

Figure 3-5: A 5-watt resistor

First Steps 39

The Light-Emitting Diode
The LED is a very common, infinitely useful component that converts elec-
trical current into light. LEDs come in various shapes, sizes, and colors.
Figure 3-6 shows a common LED.

Figure 3-6: Red LED, 5 mm in diameter

Connecting LEDs in a circuit takes some care, because they are polarized;
this means that current can enter and leave the LED in one direction only.
The current enters via the anode (positive) side and leaves via the cathode
(negative) side, as shown in Figure 3-7. Any attempt to make too much
current flow through an LED in the opposite direction will break the
component.

Thankfully, LEDs are designed so that you can tell which end is which.
The leg on the anode side is longer, and the rim at the base of the LED is
flat on the cathode side, as shown in Figure 3-8.

When adding LEDs to a project, you need to consider the operating
voltage and current. For example, common red LEDs require around 1.7 V
and 5 to 20 mA of current. This presents a slight problem for us, because
the Arduino outputs a set 5 V and a much higher current. Luckily, we can
use a current-limiting resistor to reduce the current flow into an LED. But
which value resistor do we use? That’s where Ohm’s Law comes in.

−
cathode

+
anode

LED1
Red (633nm)

current flow

anode

cathode

+−
Figure 3-7: Current flow
through an LED

Figure 3-8: LED design indicates the
anode (longer leg) and cathode (flat
rim) sides.

40 Chapter 3

To calculate the required current-limiting resistor for an LED, use this
formula:

R = (Vs − Vf) ÷ I

where Vs is the supply voltage (Arduino outputs 5 V); Vf is the LED forward
voltage drop (say, 1.7 V), and I is the current required for the LED (10 mA).
(The value of I must be in amps, so 10 mA converts to 0.01 A.)

Now let’s use this for our LEDs—with a value of 5 V for Vs , 1.7 V for Vf ,
and 0.01 A for I. Substituting these values into the formula gives a value
for R of 330 :. However, the LEDs will happily light up when fed current
less than 10 mA. It’s good practice to use lower currents when possible to
protect sensitive electronics, so we’ll use 560 :, 1/4-watt resistors with our
LEDs, which allow around 6 mA of current to flow.

N O T E When in doubt, always choose a slightly higher value resistor, because it’s better to
have a dim LED than a dead one!

T HE OHM’S L AW T R I A NGL E

Ohm’s Law states that the relationship between current, resistance, and voltage
is as follows:

voltage (V) = current (I) × resistance (R)

If you know two of the quantities, then you can calculate the third. A popu-
lar way to remember Ohm’s Law is with a triangle, as shown in Figure 3-9.

V

I R

V = I × R
I = V ÷ R
R = V ÷ I

Figure 3-9: The Ohm’s Law triangle

The Ohm’s Law triangle diagram is a convenient tool for calculating
voltage, current, or resistance when two of the three values are known. For
example, if you need to calculate resistance, put your finger over R, which
leaves you with voltage divided by current; to calculate voltage, cover V,
which leaves you with current times resistance.

First Steps 41

The Solderless Breadboard
Our ever-changing circuits will need a base—something to hold them
together and build upon. A great tool for this purpose is a solderless
breadboard. The breadboard is a plastic base with rows of electrically con-
nected sockets (just don’t cut bread on them). They come in many sizes,
shapes, and colors, as shown in Figure 3-10.

Figure 3-10: Breadboards in various shapes and sizes

The key to using a breadboard is knowing how the sockets are
connected—whether in short columns or in long rows along the edge
or in the center. The connections vary by board. For example, in the
breadboard shown at the top of Figure 3-11, columns of five holes are
connected vertically but isolated horizontally. If you place two wires in
one vertical row, then they will be electrically connected. By the same
token, the long rows in the center between the horizontal lines are con-
nected horizontally. Because you’ll often need to connect a circuit to the
supply voltage and ground, these long horizontal lines of holes are ideal
for the supply voltage and ground.

When you’re building more complex circuits, a breadboard will get
crowded and you won’t always be able to place components exactly where
you want. It’s easy to solve this problem using short connecting wires, how-
ever. Retailers that sell breadboards usually also sell small boxes of wires of
various lengths, such as the assortment shown in Figure 3-12.

42 Chapter 3

Figure 3-11: Breadboard internal connections

Figure 3-12: Assorted breadboard wires

First Steps 43

Project #1: Creating a Blinking LED Wave

Let’s put some LEDs and resistors to work. In this project, we’ll use five
LEDs to emulate the front of the famous TV show vehicle KITT from the
television show Knight Rider, creating a kind of wavelike light pattern.

The Algorithm
Here’s our algorithm for this project:

1. Turn on LED 1.
2. Wait half a second.
3. Turn off LED 1.
4. Turn on LED 2.
5. Wait half a second.
6. Turn off LED 2.
7. Continue until LED 5 is turned on, at which point the process reverses

from LED 5 to 1.
8. Repeat indefinitely.

The Hardware
Here’s what you’ll need to create this project:

x� Five LEDs
x� Five 560 : resistors
x� One breadboard
x� Various connecting wires
x� Arduino and USB cable

We will connect the LEDs to digital pins 2 through 6 via the 560-ohm
current-limiting resistors.

The Sketch
Now for our sketch. Enter this code into the IDE:

// Project 1 - Creating a Blinking LED Wave
X void setup()

{
 pinMode(2, OUTPUT); // LED 1 control pin is set up as an output
 pinMode(3, OUTPUT); // same for LED 2 to LED 5
 pinMode(4, OUTPUT);
 pinMode(5, OUTPUT);
 pinMode(6, OUTPUT);
}

44 Chapter 3

Y void loop()
{
 digitalWrite(2, HIGH); // Turn LED 1 on
 delay(500); // wait half a second
 digitalWrite(2, LOW); // Turn LED 1 off
 digitalWrite(3, HIGH); // and repeat for LED 2 to 5
 delay(500);
 digitalWrite(3, LOW);
 digitalWrite(4, HIGH);
 delay(500);
 digitalWrite(4, LOW);
 digitalWrite(5, HIGH);
 delay(500);
 digitalWrite(5, LOW);
 digitalWrite(6, HIGH);
 delay(500);
 digitalWrite(6, LOW);
 digitalWrite(5, HIGH);
 delay(500);
 digitalWrite(5, LOW);
 digitalWrite(4, HIGH);
 delay(500);
 digitalWrite(4, LOW);
 digitalWrite(3, HIGH);
 delay(500);
 digitalWrite(3, LOW);
 // the loop() will now loop around and start from the top again
}

In void setup() at X, the digital I/O pins are set to outputs, because
we want them to send current to the LEDs on demand. We specify when to
turn on each LED using the digitalWrite() function in the void loop() Y sec-
tion of the sketch.

The Schematic
Now let’s build the circuit. Circuit layout can be described in several ways.
For the first few projects in this book, we’ll use physical layout diagrams
similar to the one shown in Figure 3-13.

By comparing the wiring diagram to the functions in the sketch,
you can begin to make sense of the circuit. For example, when we use
digitalWrite(2, HIGH), a high voltage of 5 V flows from digital pin 2, through
the current-limiting resistor, through the LED via the anode and then the
cathode, and finally back to the Arduino’s GND socket to complete the cir-
cuit. Then, when we use digitalWrite(2, LOW), the current stops and the LED
turns off.

First Steps 45

1 5 10 15 20 25 30 35 40 45 50 55 60

1 5 10 15 20 25 30 35 40 45 50 55 60

A
B
C
D
E

F
G
H
I
J

A
B
C
D
E

F
G
H
I
J

SC
L

SD
A

AR
EF GN
D

IO
RE
F

RE
SE
T

3V
3

PW
M

PW
M

PW
M

L

TX
RX ON

ICSP

PW
M

PW
M

PW
M

TX RX

3
1

2
1

1
1

0
1

9 8
DIGITAL

7 6 5 4 3 2 1 0

1

5V Gnd
POWER

www.arduino.cc

ANALOG IN
Vin 0 1 2 3 4 5

Arduino UNO

LEDs 5 4 3 2 1

Figure 3-13: Circuit layout for Project 1

Running the Sketch
Now connect your Arduino and upload the sketch. After a second or two,
the LEDs should blink from left to right and then back again. Success is a
wonderful thing—embrace it!

If nothing happens, however, then immediately remove the USB cable
from the Arduino and check that you typed the sketch correctly. If you find
an error, fix it and upload your sketch again. If your sketch matches exactly
and the LEDs still don’t blink, check your wiring on the breadboard.

You now know how to make an LED blink with your Arduino, but
this sketch is somewhat inefficient. For example, if you wanted to mod-
ify this sketch to make the LEDs cycle more quickly, you would need to
alter each delay(500). There is a better way.

Using Variables
In computer programs, we use variables to store data. For example, in
the sketch for Project 1, we used the function delay(500) to keep the LEDs
turned on.

46 Chapter 3

The problem with the sketch as written is that it’s not very flexible. If we
want to make a change to the delay time, then we have to change each entry
manually. To address this problem, we’ll create a variable to represent the
value for the delay() function.

Enter the following line in the Project 1 sketch above the void setup()
function and just after the initial comment:

int d = 250;

This assigns the number 250 to a variable called d.
Next, change every 500 in the sketch to a d. Now when the sketch runs,

the Arduino will use the value in d for the delay() functions. When you
upload the sketch after making these changes, the LEDs will turn on and
off at a much faster rate, as the delay value is much smaller at the 250 value.

int indicates that the variable contains an integer—a whole number
between −32,768 and 32,767. Simply put, any integer value has no fraction
or decimal places. Now, to alter the delay, simply change the variable dec-
laration at the start of the sketch. For example, entering 100 for the delay
would speed things up even more:

int d = 100;

Experiment with the sketch, perhaps altering the delays and the
sequence of HIGH and LOW. Have some fun with it. Don’t disassemble the cir-
cuit yet, though; we’ll continue to use it with more projects in this chapter.

Project #2: Repeating with for Loops

When designing a sketch, you’ll often repeat the same function. You could
simply copy and paste the function to duplicate it in a sketch, but that’s inef-
ficient and a waste of your Arduino’s program memory. Instead, you can
use for loops. The benefit of using a for loop is that you can determine how
many times the code inside the loop will repeat.

To see how a for loop works, enter the following code as a new sketch:

// Project 2 - Repeating with for Loops
int d = 100;

void setup()
{
 pinMode(2, OUTPUT);
 pinMode(3, OUTPUT);
 pinMode(4, OUTPUT);
 pinMode(5, OUTPUT);
 pinMode(6, OUTPUT);
}

void loop()
{

First Steps 47

 for (int a = 2; a < 7 ; a++)
 {
 digitalWrite(a, HIGH);
 delay(d);
 digitalWrite(a, LOW);
 delay(d);
 }
}

The for loop will repeat the code within the curly brackets beneath it
as long as some condition is true. Here, we have used a new integer vari-
able, a, which starts with the value 2. Every time the code is executed, the
a++ will add 1 to the value of a. The loop will continue in this fashion while
the value of a is less than 7 (the condition). Once it is equal to or greater
than 7, the Arduino moves on and continues with whatever code comes
after the for loop.

The number of loops that a for loop executes can also be set by count-
ing down from a higher number to a lower number. To demonstrate this,
add the following loop to the Project 2 sketch after the first for loop:

X for (int a = 5 ; a > 1 ; a--)
 {
 digitalWrite(a, HIGH);
 delay(d);
 digitalWrite(a, LOW);
 delay(d);
}

Here, the for loop at X sets the value of a equal to 5 and then subtracts
1 after every loop due to the a--. The loop continues in this manner while
the value for a is greater than 1 (a > 1) and finishes once the value of a falls
to 1 or less than 1.

We have now re-created Project 1 using less code. Upload the sketch
and see for yourself!

Varying LED Brightness with Pulse-Width Modulation
Rather than just turning LEDs on and off rapidly using digitalWrite(), we
can define the level of brightness of an LED by adjusting the amount of
time between each LED’s on and off states using pulse-width modulation
(PWM). PWM can be used to create the illusion of an LED being on at dif-
ferent levels of brightness by turning the LED on and off rapidly, at around
500 cycles per second. The brightness we perceive is determined by the
amount of time the digital output pin is on versus the amount of time it is
off—that is, every time the LED is lit or unlit. Because our eyes can’t see
flickers faster than 50 cycles per second, the LED appears to have a con-
stant brightness.

48 Chapter 3

The greater the duty cycle (the longer the pin is on compared to off in
each cycle), the greater the perceived brightness of the LED connected to
the digital output pin.

Figure 3-14 shows various PWM duty cycles. The filled-in gray areas rep-
resent the amount of time that the light is on. As you can see, the amount
of time per cycle that the light is on increases with the duty cycle.

5V

5V

5V

5V

0V

0V

0V

0V

100% duty cycle

60% duty cycle

40% duty cycle

20% duty cycle

Figure 3-14: Various PWM duty cycles

Only digital pins 3, 5, 6, 9, 10, and 11 on a regular Arduino board can
be used for PWM. They are marked on the Arduino board with a tilde (~),
as shown in Figure 3-15.

Figure 3-15: The PWM pins are marked with a tilde (~).

To create a PWM signal, we use the function analogWrite(x, y), where x is
the digital pin and y is a value for the duty cycle, between 0 and 255, where
0 indicates a 0 percent duty cycle and 255 indicates 100 percent duty cycle.

First Steps 49

Project #3: Demonstrating PWM

Now let’s try this with our circuit from Project 2. Enter the following sketch
into the IDE and upload it to the Arduino:

// Project 3 - Demonstrating PWM
int d = 5;
void setup()
{
 pinMode(3, OUTPUT); // LED control pin is 3, a PWM capable pin
}

void loop()
{
 for (int a = 0 ; a < 256 ; a++)
 {
 analogWrite(3, a);
 delay(d);
 }

 for (int a = 255 ; a >= 0 ; a--)
 {
 analogWrite(3, a);
 delay(d);
 }
 delay(200);
}

The LED on digital pin 3 will exhibit a “breathing effect” as the
duty cycle increases and decreases. In other words, the LED will turn on,
increasing in brightness until fully lit, and then reverse. Experiment with
the sketch and circuit. For example, make five LEDs breathe at once, or
have them do so sequentially.

More Electric Components
You’ll usually find it easy to plan on having a digital output control do
something without taking into account how much current the control really
needs to get the job done. As you create your project, remember that each
digital output pin on the Arduino Uno can offer a maximum of 40 mA of
current per pin and 200 mA total for all pins. Three electronic hardware
components can help you increase the current-handling ability of the
Arduino, however, and are discussed next.

W A R N I N G If you attempt to exceed 40 mA on a single pin, or 200 mA total, then you risk per-
manently damaging the microcontroller integrated circuit (IC).

50 Chapter 3

The Transistor
Almost everyone has heard of a transistor, but most people don’t really
understand how it works. In the spirit of brevity, I will keep the explana-
tion as simple as possible. A transistor can turn on or off the flow of a much
larger current than the Arduino Uno can handle. We can, however, safely
control a transistor using an Arduino digital output pin. A popular example
is the BC548, shown in Figure 3-16.

current
flow

E

C

B

Q1

Figure 3-16: A typical transistor: the BC548

Similar to the LED, the transistor’s pins have a unique function and
need to be connected in the proper orientation. With the flat front of the
transistor facing you (as shown on the left of Figure 3-16), the pins on the
BC548 are called (from left to right) collector, base, and emitter. (Note that
this pin order, or pinout, is for the BC548 transistor; other transistors may
be oriented differently.) When a small current is applied to the base, such
as from an Arduino digital I/O pin, the larger current we want to switch
enters through the collector; then it is combined with the small current
from the base, and then it flows out via the emitter. When the small control
current at the base is turned off, no current can flow through the transistor.

The BC548 can switch up to 100 mA of current at a maximum of
30 V—much more than the Arduino’s digital output. In projects later in
the book, we will use this in other transistors, and at that time, you’ll read
about transistors in more detail.

N O T E Always pay attention to the pin order for your particular transistor, because each
transistor can have its own orientation.

The Rectifier Diode
The diode is a very simple yet useful component that allows current to
flow in one direction only. It looks a lot like a resistor, as you can see in
Figure 3-17.

First Steps 51

−
cathode

+
anode

D1
1N4004

current flow

Figure 3-17: A 1N4004-type rectifier diode

The projects in this book will use the 1N4004-type rectifier diode.
Current flows into the diode via the anode and out through the cathode,
which is marked with the ring around the diode’s body. These diodes can
protect parts of the circuit against reverse current flow, but there is a price
to pay: diodes also cause a drop in the voltage of around 0.7 V. The 1N4004
diode is rated to handle 1 A and 400 V, much higher than we will be using.
It’s a tough, common, and low-cost diode.

The Relay
Relays are used for the same reason as transistors—to control a much larger
current and voltage. A relay has the advantage of being electrically isolated
from the control circuit, which allows the Arduino to switch very large cur-
rents and voltages. Isolation is sometimes necessary to protect circuits from
these very large currents and voltages, which can damage an Arduino. Inside
the relay is an interesting pair of items: mechanical switch contacts and a
low-voltage coil of wire, as shown in Figure 3-18.

NO NC

COM

coil contacts

Figure 3-18: Inside a typical relay

52 Chapter 3

When a current is applied to the coil, the component becomes an
electromagnet and attracts a bar of metal that acts just like the toggle of
a switch. The magnet pulls the bar in one direction when on and lets it
fall back when off, thereby turning it on or off as current is applied and
removed from the coil. This movement has a distinctive “click” that you
might recognize from the turn signal in older cars.

Higher-Voltage Circuits
Now that you understand a bit about the transistor, rectifier diode, and
relay, let’s use them together to control higher currents and voltages.
Connecting the components is very simple, as shown in Figure 3-19.

151015202530354045505560

151015202530354045505560

A
B
C
D
E

F
G
H
I
J

A
B
C
D
E

F
G
H
I
J

SC
L

SD
A

AR
EF GN
D

IO
RE
F

RE
SE
T

3V
3

PW
M

PW
M

PW
M

L

TX
RX ON

ICSP

PW
M

PW
M

PW
M

TX RX

3
1

2
1

1
1

0
1

9 8
DIGITAL

7 6 5 4 3 2 1 0

1

5V Gnd
POWER

www.arduino.cc

ANALOG IN
Vin 0 1 2 3 4 5

Arduino UNO

Figure 3-19: Relay control circuit

This simple example circuit controls a relay that has a 12 V coil. One
use for this circuit would be to control a lamp or cooling fan connected
to the relay switching contacts. The Arduino’s digital pin 10 is connected to
the transistor’s base via a 1 k: resistor. The transistor controls the current
through the relay’s coil by switching it on and off. Remember that the pins
are C, B, and then E when looking at the flat surface of the transistor. The
object on the left of the breadboard at X represents a 12 V power supply for
the relay coil. The negative or ground at Y from the 12 V supply, the tran-
sistor’s emitter pin, and Arduino GND are all connected together. Finally,
a 1N4004 rectifier diode is connected across the relay’s coil at Z, with the
cathode on the positive supply side. You can check the relay’s data sheet
to determine the pins for the contacts and to connect the controlled item
appropriately.

X

Y

Z

First Steps 53

The diode is in place to protect the circuit. When the relay coil
changes from on to off, stray current remains briefly in the coil and
becomes a high-voltage spike that has to go somewhere. The diode allows
the stray current to loop around through the coil until it is dissipated as
a tiny amount of heat. It prevents the turn-off spike from damaging the
transistor or Arduino pin.

W A R N I N G If you want to control mains-rated electricity (110–250 V) at a high current with a
relay, contact a licensed electrician to complete this work for you. Even the slightest
mistake can be fatal.

Looking Ahead
And now Chapter 3 draws to a close. I hope you had fun trying out the
examples and experimented with LED effects. In this chapter, you got to
create blinking LEDs on the Arduino in various ways, did a bit of hacking,
and learned how functions and loops can be used efficiently to control com-
ponents connected to the Arduino. Studying this chapter has set you up for
more success in the forthcoming chapters.

Chapter 4 will be a lot of fun. You will create some actual projects,
including traffic lights, a thermometer, a battery tester, and more—so when
you’re ready to take it to the next level, turn the page!

4
B U I L D I N G B L O C K S

In this chapter you will

x� Learn how to read schematic diagrams, the language of electronic
circuits

x� Be introduced to the capacitor
x� Work with input pins
x� Use arithmetic and test values
x� Make decisions with if-then-else statements
x� Learn the difference between analog and digital
x� Measure analog voltage sources at different levels of precision
x� Be introduced to variable resistors, piezoelectric buzzers, and tempera-

ture sensors
x� Consolidate your knowledge by creating traffic lights, a battery tester,

and a thermometer

56 Chapter 4

The information in this chapter will help you understand an Arduino’s
potential. We’ll continue to learn more about electronics, including infor-
mation about new components, how to read schematic diagrams (the “road
maps” of electronic circuits), and the types of signals that can be measured.
Then, we’ll discuss additional Arduino functions—such as storing values,
performing mathematical operations, and making decisions. Finally, we’ll
examine some more components and then put them to use in some useful
projects.

Using Schematic Diagrams
Chapter 3 described how to build a circuit using physical layout diagrams to
represent the breadboard and components mounted on it. Although such
physical layout diagrams may seem like the easiest way to diagram a circuit,
you’ll find that as more components are added, direct representations can
make physical diagrams a real mess. Because our circuits are about to get
more complicated, we’ll start using schematic diagrams (also known as circuit
diagrams) to illustrate them, such as the one shown in Figure 4-1.

Figure 4-1: Example of a schematic diagram

Schematics are simply circuit “road maps” that show the path of electrical
current flowing through various components. Instead of showing compo-
nents and wires, a schematic uses symbols and lines.

Identifying Components
Once you know what the symbols mean, reading a schematic is easy. To
begin, let’s examine the symbols for the components we’ve already used.

The Arduino

Figure 4-2 shows a symbol for the Arduino itself. As you can see, all of the
Arduino’s connections are displayed and neatly labeled.

Building Blocks 57

N
/C

IO
 REF

SC
L

SDA

RST

AREF

A0A1A2A3A4A5

3V3
5V

V
in

Analog Input

D11

D10

D9D8D7D6D5D4D3
PW

M

TXRX PW
M

PW
M

PW
M

PW
M

PW
M

D2D1

D13

D12

D0

Digital Input/Output

Pow
er

Arduino

G
N

D

Figure 4-2: Arduino Uno symbol

The Resistor

The resistor symbol is shown in Figure 4-3.
It’s good practice to display the resistor value

and part designator along with the resistor sym-
bol (220 : and R1 in this case). This makes life
a lot easier for everyone trying to make sense of
the schematic (including you). Often you may see
ohms written as R instead—for example, 220 R.

The Rectifier Diode

The rectifier diode is shown in Figure 4-4.
Recall from Chapter 3 that rectifier diodes are

polarized, and current flows from the anode to the
cathode. On the symbol shown in Figure 4-4, the
anode is on the left and the cathode is on the
right. An easy way to remember this is to think of
current flowing toward the point of the triangle
only. Current cannot flow the other way, because
the vertical bar “stops” it.

The LED

The LED symbol is shown in Figure 4-5.
All members of the diode family share a

common symbol: the triangle and vertical line.
However, LED symbols show two parallel arrows
pointing away from the triangle to indicate that
light is being emitted.

R1
220Ω

Figure 4-3: Resistor
symbol

−
cathode

+
anode

D1
1N4004

current flow

Figure 4-4: Rectifier
diode symbol

−
cathode

+
anode

LED1
Red (633nm)

current flow

Figure 4-5: LED symbol

58 Chapter 4

The Transistor

The transistor symbol is shown in Figure 4-6.
We’ll use this to represent our BC548.

The vertical line at the top of the symbol
(labeled C) represents the collector, the horizon-
tal line at the left represents the base (labeled
B), and the bottom line represents the emitter
(labeled E). The arrow inside the symbol, point-
ing down and to the right, tells us that this is an
NPN -type transistor, because NPN transistors
allow current to flow from the collector to the
emitter. (PNP -type transistors allow current to
flow from the emitter to collector.)

When numbering transistors, we use the let-
ter Q , just as we use R to number resistors.

The Relay

The relay symbol is shown in Figure 4-7.
Relay symbols can vary in many ways

and may have more than one set of con-
tacts, but all relay symbols share certain
elements in common. The first is the
coil, which is the curvy vertical line at
the left. The second element is the relay
contacts. The COM (for common) contact
is often used as an input, and the contacts
marked NO (normally open) and NC (nor-
mally closed) are often used as outputs.

The relay symbol is always shown with
the relay in the off state and the coil not
energized—that is, with the COM and NC
pins connected. When the relay coil is
energized, the COM and NO pins will be
connected in the symbol.

Wires in Schematics
When wires cross or connect in schematics, they are drawn in particular
ways, as shown in the following examples.

current
flow

E

C

B

Q1

Figure 4-6: Transistor
symbol

NO NC

COM

coil contacts

Figure 4-7: Relay symbol

Building Blocks 59

Crossing but Not Connected Wires

When two wires cross but are not connected, the crossing can be repre-
sented in one of two ways, as shown in Figure 4-8. There is no one right
way; it’s a matter of preference.

Figure 4-8: Nonconnecting crossed wires

Connected Wires

When wires are meant to be physically connected, a
junction dot is drawn at the point of connection, as shown
in Figure 4-9.

Wire Connected to Ground

When a wire is connected back to ground (GND),
the standard method is to use the symbol shown in
Figure 4-10.

The GND symbol at the end of a line in a schematic
tells you that the wire is physically connected to the
Arduino GND pin.

Dissecting a Schematic
Now that you know the symbols for various components and their connec-
tions, let’s dissect the schematic we would draw for Project 1. Recall that you
made five LEDs blink backward and forward.

Compare the schematic shown in Figure 4-11 with Figure 3-13 on
page 45, and you’ll probably agree that using a schematic is a much eas-
ier way to describe a circuit.

From now on, we’ll use schematics to describe circuits, and we’ll show
the symbols for new components as they’re introduced.

N O T E If you’d like to create your own computer-drawn schematics, try the Fritzing applica-
tion, available for free from http://www.fritzing.org/.

Figure 4-9:
Two wires that
are connected

Figure 4-10:
The GND
symbol

60 Chapter 4

N/C

IO REF

SCL

SDA

RST

AREF

A0

A1

A2

A3

A4

A5

3V3 5V Vin

Analog Input

D11

D10

D9

D8

D7

D6

D5

D4

D3 PWM

TX

RX

PWM

PWM

PWM

PWM

PWM

D2

D1

D13

D12

D0

Di
gi

ta
l I

np
ut

/O
ut

pu
t

Power

Arduino

GND

R5
560Ω

R3
560Ω

R4
560Ω

R2
560Ω

R1
560Ω

LED5 LED4 LED1LED2LED3

Figure 4-11: Schematic for Project 1

The Capacitor
A capacitor is a device that holds an electric charge. It consists of two metal
plates with an insulating layer that allows an electric charge to build up
between the plates. Once the current is stopped, the charge remains and
can flow out of the capacitor (called discharging the capacitor) as soon as
the charge voltage stored in the capacitor is presented with a new path
for the current to take.

Measuring the Capacity of a Capacitor
The amount of charge that a capacitor can store is measured in farads,
and one farad is actually a very large amount. Therefore, you will gener-
ally find capacitors with values measured in picofarads or microfarads.

Building Blocks 61

One picofarad (pF) is 0.000000000001 of a farad, and one microfarad (µF)
is 0.000001 of a farad. Capacitors are also manufactured to accept certain
voltage maximums. In this book, we’ll be working with low voltages only, so
we won’t be using capacitors rated at greater than 10 V or so; it’s generally
fine, however, to use higher-voltage specification capacitors in lower-voltage
circuits. Common voltage ratings are 10, 16, 25, and 50 V.

Reading Capacitor Values
Reading the value of a ceramic capacitor
takes some practice, because the value
is printed in a sort of code. The first two
digits represent the value in picofarads,
and the third digit is the multiplier in
tens. For example, the capacitor shown in
Figure 4-12 is labeled 104. This equates to
10, followed by four zeros, which equals
100,000 picofarads/pF (100 nanofarads
[nF], or 0.1 microfarads [µF]).

N O T E The conversions between units of measure can
be a little confusing, but you can print an
excellent conversion chart from http://www
.justradios.com/uFnFpF.html.

Types of Capacitors
Our projects will use two types of capacitors: ceramic and electrolytic.

Ceramic Capacitors

Ceramic capacitors, such as the one shown
in Figure 4-12, are very small and there-
fore hold a small amount of charge. They
are not polarized and can be used for
current flowing in either direction. The
schematic symbol for a nonpolarized
capacitor is shown in Figure 4-13.

Ceramic capacitors work beautifully
in high-frequency circuits because they
can charge and discharge very quickly
due to their small capacitance.

100nF

Figure 4-13: A nonpolarized
capacitor schematic symbol,
with the capacitor’s value
shown at the upper right

Figure 4-12: A 0.1 µF ceramic
capacitor

62 Chapter 4

Electrolytic Capacitors

Electrolytic capacitors, like the one shown in Figure 4-14, are physically larger
than ceramic types, offer increased capacitance, and are polarized. A mark-
ing on the cover shows either the positive (+) side or negative side (–). In
Figure 4-14, you can see the stripe and the small negative (–) symbol that
identifies the negative side. Like resistors, capacitors also have a level of
tolerance with their values. The capacitor in Figure 4-14 has a tolerance of
20 percent and a capacitance of 100 µF.

Figure 4-14: Electrolytic capacitor

The schematic symbol for electrolytic capacitors, shown in Figure 4-15,
includes the + symbol to indicate the capacitor’s polarity.

1µF

Figure 4-15: Polarized capacitor
schematic symbol

Electrolytic capacitors are often used to store larger electric charges
and to smooth power supply voltages. Like a small temporary battery, they
can provide power-supply smoothing and stability near circuits or parts
that draw high currents quickly from the supply. This prevents unwanted
dropouts and noise in your circuits. Luckily, the values of the electrolytic
capacitor are printed clearly on the outside and don’t require decoding or
interpretation.

Now that you have experience generating basic forms of output using
LEDs with your Arduino, it’s time to learn how to send input from the out-
side world into your Arduino using digital inputs and to make decisions
based on that input.

Building Blocks 63

Digital Inputs
In Chapter 3, we used digital I/O pins as outputs to turn LEDs on and off.
We can use these same pins to accept input from users—such as detecting
whether a push button has been pressed by a user.

Like digital outputs, digital inputs have two states: high and low.
The simplest form of digital input is a push button, like those shown in
Figure 4-16. You can insert these directly into your solderless breadboard.
A push button allows a voltage or current to pass when the button is pressed,
and digital input pins are used to detect the presence of the voltage and to
determine whether a button is pressed.

Figure 4-16: Basic push buttons on a breadboard

Notice how the button at the bottom of the figure is inserted into the
breadboard, bridging rows 23 and 25. When the button is pressed, it con-
nects the two rows. The schematic symbol for this particular push button
is shown in Figure 4-17. The symbol represents the two sides of the button,
which are numbered with the prefix S. When the button is pressed, the line
bridges the two halves and allows voltage or current through.

S1

Figure 4-17: Push-button schematic symbol

64 Chapter 4

ME A SUR ING S W I TCH BOUNCE
W I T H A DIGI TA L S TOR AGE OSCIL LOSCOPE

Push buttons exhibit a phenomenon called switch bounce, or bouncing,
which refers to a button’s tendency to turn on and off several times after being
pressed only once by the user. This phenomenon occurs because the metal con-
tacts inside a push button are so small that they can vibrate after a button has
been released, thereby switching on and off again very quickly.

Switch bounce can be demonstrated with a digital storage oscilloscope
(DSO), a device that displays the change in a voltage over a period of time.
For example, consider Figure 4-18, a DSO displaying a switch bounce.

Figure 4-18: Measuring switch bounce

The top half of the display in Figure 4-18 shows the results of pressing a
button several times. When the voltage line indicated by the arrows is at the
higher horizontal position (5 V), the button is in the on state and the voltage
is connected through it. Underneath the word Stop is a slice of time just after
the button was switched off, as shown by two vertical lines. The button voltage
during this time is magnified in the bottom half of the screen. At A, the button is
released by the user and the line drops down to 0 V. However, as you can see,
due to physical vibration, the button is again at the higher 5 V position until B,
where it vibrates off and then on again until C, where it settles at the low (off)
state. In effect, instead of relaying one button press to our Arduino, in this case,
we have unwittingly sent three.

Building Blocks 65

Project #4: Demonstrating a Digital Input

Our goal in this project is to create a button that turns on an LED for half a
second when pressed.

The Algorithm
Here is our algorithm:

1. Test to see if the button has been pressed.
2. If the button has been pressed, then turn on the LED for half a second,

and then turn it off.
3. If the button has not been pressed, then do nothing.
4. Repeat indefinitely.

The Hardware
Here’s what you’ll need to create this project:

x� One push button
x� One LED
x� One 560 : resistor
x� One 10 k: resistor
x� One 100 nF capacitor
x� Various connecting wires
x� One breadboard
x� Arduino and USB cable

The Schematic
First we create the circuit on the breadboard with the schematic shown in
Figure 4-19. Notice how the 10 k: resistor is connected between GND and
digital pin seven. We call this a pull-down resistor, because it pulls the voltage
at the digital pin almost to zero. Furthermore, by adding a 100 nF capacitor
across the 10 k: resistor, we create a simple debounce circuit to help filter
out the switch bounce. When the button is pressed, the digital pin goes
immediately to high. But when the button is released, digital pin seven is
pulled down to GND via the 10 k: resistor, and the 100 nF capacitor cre-
ates a small delay. This effectively covers up the bouncing pulses by slow-
ing down the voltage falling to GND, thereby eliminating most of the false
readings due to floating voltage and erratic button behavior.

66 Chapter 4

N/C

IO REF

SCL

SDA

RST

AREF

A0

A1

A2

A3

A4

A5

3V3 5V Vin

Analog Input

D11

D10

D9

D8

D7

D6

D5

D4

D3 PWM

TX

RX

PWM

PWM

PWM

PWM

PWM

D2

D1

D13

D12

D0

Di
gi

ta
l I

np
ut

/O
ut

pu
t

Power

Arduino

GND

R1
560Ω

LED1
C1
100nFR2

10kΩ

S1

Figure 4-19: Schematic for Project 4

Because this is the first time you’re
building a circuit with a schematic, fol-
low these step-by-step instructions as you
walk through the schematic; this should
help you understand how the compo-
nents connect:

1. Insert the push button into the
breadboard, as shown in Figure 4-20.

2. Turn the breadboard 90 degrees
counterclockwise and insert the
10 k: resistor, a short link wire,
and the capacitor, as shown in
Figure 4-21.

Figure 4-20: Push button inserted
into breadboard

Building Blocks 67

Figure 4-21: 10 kȍ resistor, capacitor, and push button

3. Connect one wire from the Arduino 5 V pin to the leftmost vertical col-
umn on the breadboard, and connect another wire from the Arduino
GND pin to the vertical row to the right of the 5 V column, as shown in
Figure 4-22.

Figure 4-22: The 5 V (red) and GND (black) wires

10 kȍ resistor

capacitor

push button

GND wire

5 V wire

68 Chapter 4

4. Run a wire from Arduino digital pin 7 to the breadboard near the top-
right corner of the button, as shown in Figure 4-23.

Figure 4-23: Connecting the button to the digital input

5. Insert the LED into the breadboard with the short leg (the cathode)
connected to the GND column, and the long leg (the anode) in a row
to the right. Next, connect the 560 : resistor to the right of the LED,
as shown in Figure 4-24.

Figure 4-24: Inserting the LED and 560 ȍ resistor

LED

560 ȍ
resistor

anode

Building Blocks 69

6. Connect a wire from the right side of the 560 : resistor to Arduino
digital pin 12, as shown in Figure 4-25.

Figure 4-25: Connecting the LED branch to the Arduino

Before continuing, review the schematic for this circuit and check that
your components are wired correctly. Compare the schematic against the
actual wiring of the circuit.

The Sketch
For the sketch, enter and upload Listing 4-1:

// Project 4 - Demonstrating a Digital Input
X #define LED 12

#define BUTTON 7

void setup()
{

Y pinMode(LED, OUTPUT); // output for the LED
 pinMode(BUTTON, INPUT); // input for the button
}

void loop()
{
 if (digitalRead(BUTTON) == HIGH)
 {

70 Chapter 4

 digitalWrite(LED, HIGH); // turn on the LED
 delay(500); // wait for 0.5 seconds
 digitalWrite(LED, LOW); // turn off the LED
 }
}

Listing 4-1: Digital input

After you’ve uploaded your sketch, tap the push button briefly and your
LED should stay on for half a second.

Modifying Your Sketch
Once you’ve had some success, try modifying your sketch by changing the
length of time that the light stays on or by adding a push button control to
Project 3. (Don’t disassemble this circuit, though; we’ll use it again in the
next example.)

Understanding the Sketch
Let’s examine the new items in the sketch for Project 4—specifically, #define,
digital input pins, and the if-then function.

Creating Constants with #define
Before void setup(), we use #define statements at X to create fixed variables:
When the sketch is compiled, the IDE replaces any instance of the defined
word with the number that follows it. For example, when the IDE sees LED in
the line at Y, it replaces it with the number 12.

We’re basically using the #define command to label the digital pins for
the LED and button in the sketch. Also notice that we do not use a semi-
colon after a #define value. It’s a good idea to label pin numbers and other
fixed values (such as a time delay) in this way, because if the value is used
repeatedly in the sketch, then you won’t have to edit the same item more
than once. In this example, LED is used three times in the sketch; to edit this
value, we’d simply have to change its definition once in its #define statement.

Reading Digital Input Pins
To read the status of a button, we first define a digital I/O pin as an input
in void setup() using the following:

 pinMode(BUTTON, INPUT); // input for button

Next, to discover whether the button is connecting a voltage through to
the digital input (that is, it’s being pressed), we use digitalRead(pin), where
pin is the digital pin number to read. The function returns either HIGH (volt-
age is close to 5 V at the pin) or LOW (voltage is close to 0 V at the pin).

Building Blocks 71

Making Decisions with if
Using if, we can make decisions in our sketch and tell the Arduino to run
different code, depending on the decision. For example, in the sketch for
Project 4, we used Listing 4-2:

// Listing 4-2
if (digitalRead(BUTTON) == HIGH)
{
 digitalWrite(LED, HIGH); // turn on the LED
 delay(500); // wait for 0.5 seconds
 digitalWrite(LED, LOW); // turn off the LED
}

Listing 4-2: A simple if-then example

The first line in the code begins with if tests for a condition. If the condi-
tion is true (that is, voltage is HIGH), then it means that the button is pressed
and the code that follows inside the curly brackets will run.

To determine whether the button is pressed (digitalRead(BUTTON) is set
to HIGH), we use a comparison operator, a double equal sign (==). If we were to
replace == with != (not equal to) in the sketch, then the LED would turn off
when the button is pressed instead. Try it and see.

N O T E A common mistake is to use a single equal sign (=), which means “make equal to,” in
a test statement instead of a double equal sign (==), which says “test if it is equal to.”
You may not get an error message, but your if statement may not work!

Making More Decisions with if-then-else
You can add another action to an if statement by using else. For example, if
we rewrite Listing 4-1 by adding else as shown in Listing 4-3, then the LED
will turn on if the button is pressed, or else it will be off. Using else forces
the Arduino to run another section of code if the test in the if statement is
not true.

// Listing 4-3
#define LED 12
#define BUTTON 7

void setup()
{
 pinMode(LED, OUTPUT); // output for the LED
 pinMode(BUTTON, INPUT); // input for the button
}

void loop()
{

72 Chapter 4

 if (digitalRead(BUTTON) == HIGH)
 {
 digitalWrite(LED, HIGH);
 }
 else
 {
 digitalWrite(LED, LOW);
 }
}

Listing 4-3: Adding else

Boolean Variables
Sometimes you need to record whether something is in either of only two
states, such as on or off, or hot or cold. A Boolean variable is the legendary
computer “bit” whose value can be only a zero (0, false) or one (1, true).
This is where the Boolean variable is useful: It can only be true or false.
Like any other variable, we need to declare it in order to use it:

boolean raining = true; // create the variable "raining" and first make it true

Within the sketch, you can change the state of a Boolean with a simple
reassignment, such as this:

raining = false;

It’s simple to use Boolean variables to make decisions using an if test
structure. Because Boolean comparisons can either be true or false, they
work well with the comparison operators != and ==. Here’s an example:

if (raining == true)
{
 if (summer != true)
 {
 // it is raining and not summer
 }
}

Comparison Operators
We can use various operators to make decisions about two or more Boolean
variables or other states. These include the operators not (!), and (&&), and
or (||).

Building Blocks 73

The not Operator

The not operator is denoted by the use of an exclamation mark (!). This
operator is used as an abbreviation for checking whether something is not
true. Here’s an example:

if (!raining)
{
 // it is not raining (raining == false)
}

The and Operator

The logical and operator is denoted by && . Using and helps reduce the
number of separate if tests. Here’s an example:

if ((raining == true) && (!summer))
{
 // it is raining and not summer (raining == true and summer == false)
}

The or Operator

The logical or operator is denoted by ||. Using or is very simple; here’s an
example:

if ((raining == true) || (summer == true))
{
 // it is either raining or summer
}

Making Two or More Comparisons
You can also use two or more comparisons in the same if. Here’s an example:

if (snow == true && rain == true && !hot)
{
 // it is snowing and raining and not hot
}

And you can use parentheses to set the orders of operation. In the next
example, the comparison in the parentheses is checked first, given a true or
false state, and then compared with the rest in the if-then statement.

if ((snow == true || rain == true) && hot == false))
{
 // it is either snowing or raining and not hot
}

74 Chapter 4

Lastly, just like the examples of the not (!) operator before a value,
simple tests of true or false can be performed without requiring == true or
== false in each test. The following code works out the same as in the pre-
ceding example:

if ((snow || rain) && !hot)
{
 // it is either snowing or raining and not hot
 // (snow is true OR rain is true) AND it is not hot
}

As you can see, it’s possible to have the Arduino make a multitude of
decisions using Boolean variables and comparison operators. Once you
move on to more complex projects, this will become very useful.

Project #5: Controlling Traffic

Now let’s put your newfound knowledge to use by solving a hypothetical
problem. As the town planner for a rural shire, you have a problem with a
single-lane bridge that crosses the river. Every week, one or two accidents
occur at night, when tired drivers rush across the bridge without first stop-
ping to see if the road is clear. You have suggested that traffic lights be
installed, but the mayor wants to see them demonstrated before signing
off on the purchase. You could rent temporary lights, but they’re expensive.
Instead, you’ve decided to build a model of the bridge with working traffic
lights using LEDs and an Arduino.

The Goal
Our goal is to install three-color traffic lights at each end of the single-lane
bridge. The lights allow traffic to flow only in one direction at a time. When
sensors located at either end of the bridge detect a car waiting at a red light,
the lights will change and allow the traffic to flow in the opposite direction.

The Algorithm
We’ll use two buttons to simulate the vehicle sensors at each end of the
bridge. Each set of lights will have red, yellow, and green LEDs. Initially, the
system will allow traffic to flow from west to east, so the west-facing lights
will be set to green and the east-facing lights will be set to red.

When a vehicle approaches the bridge (modeled by pressing the button)
and the light is red, the system will turn the light on the opposite side
from green to yellow to red, and then wait a set period of time to allow any
vehicles already on the bridge to finish crossing. Next, the yellow light on
the waiting vehicle’s side will blink as a “get ready” notice for the driver, and
finally the light will change to green. The light will remain green until a
vehicle approaches the other side, at which point the process repeats.

Building Blocks 75

The Hardware
Here’s what you’ll need to create this project:

x� Two red LEDs (LED1 and LED2)
x� Two yellow LEDs (LED3 and LED4)
x� Two green LEDs (LED5 and LED6)
x� Six 560 : resistors (R1 to R6)
x� Two 10 k: resistor (R7 and R8)
x� Two 100 nF capacitors (C1 and C2)
x� Two push buttons (S1 and S2)
x� One medium-sized breadboard
x� One Arduino and USB cable
x� Various connecting wires

The Schematic
Because we’re controlling only six LEDs and receiving input from two but-
tons, the design will not be too difficult. Figure 4-26 shows the schematic
for our project.

N/C

IO REF

SCL

SDA

RST

AREF

A0

A1

A2

A3

A4

A5

3V3 5V Vin

Analog Input

D11

D10

D9

D8

D7

D6

D5

D4

D3 PWM

TX

RX

PWM

PWM

PWM

PWM

PWM

D2

D1

D13

D12

D0

Di
gi

ta
l I

np
ut

/O
ut

pu
t

Power

Arduino

GND

S2

S1

R5
560Ω

R4
560Ω

R6
560Ω

R3
560Ω

R2
560Ω

R1
560Ω

R8
10kΩ

R7
10kΩ

C2
100nF

C1
100nF

LED2
Red

LED1
Red

LED4
Yellow

LED3
Yellow

LED6
Green

LED5
Green

Figure 4-26: Schematic for Project 5

76 Chapter 4

This circuit is basically a more elaborate version of the button and LED
circuit in Project 4, with resistors, more LEDs, and another button.

Be sure that the LEDs are inserted in the correct direction: the resistors
connect to LED anodes, and the LED cathodes connect to the Arduino
GND pin, as shown in Figure 4-27.

Figure 4-27: Completed circuit

The Sketch
And now for the sketch. Can you see how it matches our algorithm?

// Project 5 - Controlling Traffic

// define the pins that the buttons and lights are connected to:
X #define westButton 7

#define eastButton 13
#define westRed 2
#define westYellow 1
#define westGreen 0
#define eastRed 12
#define eastYellow 11
#define eastGreen 10

#define yellowBlinkTime 500 // 0.5 seconds for yellow light blink

Building Blocks 77

Y boolean trafficWest = true; �// west = true, east = false
Z int flowTime = 10000; // amount of time to let traffic flow
[int changeDelay = 2000; �// amount of time between color changes

void setup()
{
 // setup digital I/O pins
 pinMode(westButton, INPUT);
 pinMode(eastButton, INPUT);
 pinMode(westRed, OUTPUT);
 pinMode(westYellow, OUTPUT);
 pinMode(westGreen, OUTPUT);
 pinMode(eastRed, OUTPUT);
 pinMode(eastYellow, OUTPUT);
 pinMode(eastGreen, OUTPUT);

 // set initial state for lights - west side is green first
 digitalWrite(westRed, LOW);
 digitalWrite(westYellow, LOW);
 digitalWrite(westGreen, HIGH);
 digitalWrite(eastRed, HIGH);
 digitalWrite(eastYellow, LOW);
 digitalWrite(eastGreen, LOW);
}

void loop()
{
 if (digitalRead(westButton) == HIGH) // request west>east traffic flow
 {
 if (trafficWest != true)
// only continue if traffic flowing in the opposite (east) direction
 {
 trafficWest = true; // change traffic flow flag to west>east
 delay(flowTime); // give time for traffic to flow
 digitalWrite(eastGreen, LOW); // change east-facing lights from green
 // to yellow to red
 digitalWrite(eastYellow, HIGH);
 delay(changeDelay);
 digitalWrite(eastYellow, LOW);
 digitalWrite(eastRed, HIGH);
 delay(changeDelay);
 for (int a = 0; a < 5; a++) // blink yellow light
 {
 digitalWrite(westYellow, LOW);
 delay(yellowBlinkTime);
 digitalWrite(westYellow, HIGH);
 delay(yellowBlinkTime);
 }
 digitalWrite(westYellow, LOW);
 digitalWrite(westRed, LOW); // change west-facing lights from red to green
 digitalWrite(westGreen, HIGH);
 }
 }

78 Chapter 4

 if (digitalRead(eastButton) == HIGH) // request east>west traffic flow
 {
 if (trafficWest == true)
// only continue if traffic flow is in the opposite (west) direction
 {
 trafficWest = false; // change traffic flow flag to east>west
 delay(flowTime); // give time for traffic to flow
 digitalWrite(westGreen, LOW);
// change west lights from green to yellow to red
 digitalWrite(westYellow, HIGH);
 delay(changeDelay);
 digitalWrite(westYellow, LOW);
 digitalWrite(westRed, HIGH);
 delay(changeDelay);
 for (int a = 0 ; a < 5 ; a++) // blink yellow light
 {
 digitalWrite(eastYellow, LOW);
 delay(yellowBlinkTime);
 digitalWrite(eastYellow, HIGH);
 delay(yellowBlinkTime);
 }
 digitalWrite(eastYellow, LOW);
 digitalWrite(eastRed, LOW); // change east-facing lights from red to green
 digitalWrite(eastGreen, HIGH);
 }
 }
}

Our sketch starts by using #define at X to associate digital pin
numbers with labels for all the LEDs used, as well as the two buttons.
We have red, yellow, and green LEDs and a button each for the west and
east sides of the bridge. The Boolean variable trafficWest at Y is used to
keep track of which way the traffic is flowing—true is west to east, and
false is east to west.

N O T E Notice that trafficWest is a single Boolean variable with the traffic direction set as
either true or false. Having a single variable like this instead of two (one for east
and one for west) ensures that both directions cannot accidentally be true at the same
time, which helps avoid a crash!

The integer variable flowTime at Z is the minimum period of time that
vehicles have to cross the bridge. When a vehicle pulls up at a red light,
the system delays this period to give the opposing traffic time to cross the
bridge. The integer variable changeDelay at [is the period of time between
the traffic lights switching from green to yellow to red.

Before the sketch enters the void loop() section, it is set for traffic to
flow from west to east in void setup().

Building Blocks 79

Running the Sketch
Once it’s running, the sketch does nothing until one of the buttons is
pressed. When the east button is pressed, the line

if (trafficWest == true)

ensures that the lights change only if the traffic is heading in the opposite
direction. The rest of the code section is composed of a simple sequence of
waiting and then of turning on and off various LEDs to simulate the traffic-
light operation.

Analog vs. Digital Signals
In this section, you’ll learn the difference between digital and analog
signals, and you’ll learn how to measure analog signals with the analog
input pins.

Until now, our sketches have been using digital electrical signals, with
just two discrete levels. Specifically, we used digitalWrite(pin, HIGH) and
digitalWrite(pin, LOW) to blink an LED and digitalRead() to measure whether
a digital pin had a voltage applied to it (HIGH) or not (LOW). Figure 4-28 is a
visual representation of a digital signal that alternates between high and low.

Figure 4-28: A digital signal, with HIGHs appearing as horizontal lines at the top,
and LOWs appearing at the bottom

Unlike digital signals, analog signals can vary with an indefinite num-
ber of steps between high and low. For example, Figure 4-29 shows an ana-
log signal of a sine wave. Notice in the figure that as time progresses, the
voltage moves fluidly between high and low levels.

80 Chapter 4

Figure 4-29: An analog signal of a sine wave

With our Arduino, high is closer to 5 V and
low is closer to 0 V, or GND. We can measure
the voltage values of an analog signal with our
Arduino using the six analog inputs shown in
Figure 4-30. These analog inputs can safely mea-
sure voltages from 0 (GND) to no more than 5 V.

If you use the function analogRead(), then
the Arduino will return a number between 0
and 1,023 in proportion to the voltage applied
to the analog pin. For example, you might use
analogRead() to store the value of analog pin zero
in the integer variable a:

 a = analogRead(0); // read analog input pin 0 (A0)
 // returns 0 to 1023 which is usually 0.000 to 4.995
volts

Project #6: Creating a Single-Cell Battery Tester

Although the popularity and use of cell batteries has declined, most people
still have a few devices around the house that use AA, AAA, C, or D cell
batteries, such as remote controls, clocks, or children’s toys. These batteries
carry much less than 5 V, so we can measure a cell’s voltage with our Arduino
to determine the state of the cell. In this project we’ll create a battery tester.

Figure 4-30: Analog
inputs on the Arduino Uno

Building Blocks 81

The Goal
Single-cell batteries such as AAs usually begin at about 1.6 V when new and
then decrease with use. We will measure the voltage and express the battery
condition visually with LEDs. We’ll use the reading from analogRead() and
then convert the reading to volts. The maximum voltage that can be read
is 5 V, so we divide 5 by 1,024 (the number of possible values), which equals
0.0048. Therefore, if analogRead() returns 512, then we multiply that reading
by 0.0048, which equals 2.4576 V.

The Algorithm
Here’s the algorithm for our battery tester operation:

1. Read from analog pin zero.
2. Multiply the reading by 0.0048 to create a voltage value.
3. If the voltage is greater than or equal to 1.6 V, then briefly turn on a

green LED.
4. If the voltage is greater than 1.4 V and less than 1.6 V, then briefly turn

on a yellow LED.
5. If the voltage is less than 1.4 V, then briefly turn on a red LED.
6. Repeat indefinitely.

The Hardware
Here’s what you’ll need to create this project:

x� Three 560 : resistors (R1 to R3)
x� One 2.2 k: resistor (R4)
x� One green LED (LED1)
x� One yellow LED (LED2)
x� One red LED (LED3)
x� One breadboard
x� Various connecting wires
x� One Arduino and USB cable

The Schematic
The schematic for the single-cell battery tester circuit is shown in Figure 4-31.
On the left side, notice the two terminals, labeled + and –. Connect the
matching sides of the single-cell battery to be tested at those points. Positive
should connect to positive, and negative should connect to negative.

82 Chapter 4

W A R N I N G Under no circumstances should you measure anything larger than 5 V, nor should
you connect positive to negative, or vice versa. Doing these things will damage your
Arduino board.

N/C

IO REF

SCL

SDA

RST

AREF

A0

A1

A2

A3

A4

A5

3V3 5V Vin

Analog Input

D11

D10

D9

D8

D7

D6

D5

D4

D3 PWM

TX

RX

PWM

PWM

PWM

PWM

PWM

D2

D1

D13

D12

D0

Di
gi

ta
l I

np
ut

/O
ut

pu
t

Power

Arduino

GND

R3
560Ω

R2
560Ω

R1
560Ω

R4
2k2

LED1
Green

LED2
Yellow

LED3
Red

+

−

Figure 4-31: Schematic for Project 6

The Sketch
Now for the sketch:

// Project 6 - Creating a Single-Cell Battery Tester
#define newLED 2 // green LED 'new'
#define okLED 4 // yellow LED 'ok'
#define oldLED 6 // red LED 'old'

int analogValue = 0;
X float voltage = 0;

int ledDelay = 2000;

Building Blocks 83

void setup()
{
 pinMode(newLED, OUTPUT);
 pinMode(okLED, OUTPUT);
 pinMode(oldLED, OUTPUT);
}

void loop()
{

Y analogValue = analogRead(0);
Z voltage = 0.0048*analogValue;
[if (voltage >= 1.6)

 {
 digitalWrite(newLED, HIGH);
 delay(ledDelay);
 digitalWrite(newLED, LOW);
 }

\ else if (voltage < 1.6 && voltage > 1.4)
 {
 digitalWrite(okLED, HIGH);
 delay(ledDelay);
 digitalWrite(okLED, LOW);
 }

] else if (voltage <= 1.4)
 {
 digitalWrite(oldLED, HIGH);
 delay(ledDelay);
 digitalWrite(oldLED, LOW);
 }
}

In the sketch for Project 6, the Arduino takes the value measured by
analog pin 0 at Y and converts this to a voltage at Z. You’ll learn about a
new type of variable, float at X, in the next section. You’ll also see some
familiar code, such as the if-else functions, and some new topics, such as
doing arithmetic and using comparison operators to compare numbers,
which are all discussed in the sections that follow.

Doing Arithmetic with an Arduino
Like a pocket calculator, the Arduino can perform calculations for us, such as
multiplication, division, addition, and subtraction. Here are some examples:

a = 100;
b = a + 20;
c = b - 200;
d = c + 80; // d will equal 0

84 Chapter 4

Float Variables
When you need to deal with numbers with a decimal point, you can use
the variable type float. The values that can be stored in a float fall between
3.4028235 × 1038 and −3.4028235 × 1038, and are generally limited to six or
seven decimal places of precision. And you can mix integers and float num-
bers in your calculations. For example, you could add the float number f to
the integer a then store it as the float variable g:

int a = 100;
float f;
float g;

 f = a / 3; // f = 33.333333
 g = a + f; // g = 133.333333

Comparison Operators for Calculations
We used comparison operators such as == and != with if statements and digi-
tal input signals in Project 5. In addition to these operators, we can also use
the following to compare numbers or numerical variables:

< less than
> greater than
<= less than or equal to
>= greater than or equal to

We’ve used these comparison operators to compare numbers in lines [,
\, and] in the sketch for Project 6 described earlier.

Improving Analog Measurement Precision with a
Reference Voltage

As demonstrated in Project 6, the analogRead() function returns a value
proportional to a voltage between 0 and 5 V. The upper value (5 V) is the
reference voltage, the maximum voltage that the Arduino analog inputs will
accept and return the highest value for (1,023).

To increase precision while reading even lower voltages, we can use
a lower reference voltage. For example, when the reference voltage is 5 V,
analogRead() represents this with a value from 0 to 1,023. However, if we need
to measure only a voltage with a maximum of (for example) 2 V, then we
can alter the Arduino output to represent 2 V using the 0–1,023 value range
to allow for more precise measurement. You can do this with either an
external or internal reference voltage, as discussed next.

Building Blocks 85

Using an External Reference Voltage
The first method of using a reference voltage is
with the AREF (analog reference) pin, as shown in
Figure 4-32.

We can introduce a new reference voltage by
connecting the voltage into the AREF pin and the
matching GND to the Arduino’s GND. Note that
this can lower the reference voltage but will not raise
it, because the reference voltage connected to an Arduino Uno must not
exceed 5 V. A simple way to set a lower reference voltage is by creating a
voltage divider with two resistors, as shown in Figure 4-33.

N
/C

IO
 REF

SC
L

SDA

RST

AREF

A0A1A2A3A4A5

3V3
5V

V
in

Analog Input

D11

D10

D9D8D7D6D5D4D3
PW

M

TXRX PW
M

PW
M

PW
M

PW
M

PW
M

D2D1

D13

D12

D0

Digital Input/Output

Pow
er

Arduino

G
N

D

100nF

R2R1

Figure 4-33: Voltage divider circuit

The values of R1 and R2 will determine the reference voltage according
to the following formula:

V V
R2

R1+R3out in= ⎛
⎝⎜

⎞
⎠⎟

Vout is the reference voltage, and Vin is the input voltage—in this case
5 V. R1 and R2 are the resistor values in ohms.

The simplest way to divide the voltage is to split Vin in half by setting R1
and R2 to the same value—for example, 10 k: each. When you’re doing
this, it’s best to use the lowest-tolerance resistors you can find, such as 1 per-
cent; confirm their true resistance values with a multimeter, and use those
confirmed values in the calculation. Furthermore, it’s also a very good idea
to place a 100 nF capacitor between AREF and GND to avoid a noisy AREF
and prevent unstable analog readings.

Figure 4-32: The
Arduino Uno AREF pin

86 Chapter 4

When using an external reference voltage, insert the following line in
the void setup() section of your sketch:

 analogReference(EXTERNAL); // select AREF pin for reference voltage

Using the Internal Reference Voltage
The Arduino Uno also has an internal 1.1 V reference voltage. If this
meets your needs, no hardware changes are required. Just add this line to
void setup():

 analogReference(INTERNAL); // select internal 1.1 V reference voltage

The Variable Resistor
Variable resistors, also known as potentiometers, can generally be adjusted
from 0 : up to their rated value. Their schematic symbol is shown in
Figure 4-34.

Variable resistors have three pin connections: one in the center pin
and one on each side. As the shaft of a variable resistor turns, it increases
the resistance between one side and the center and decreases the resistance
between the center and the opposite side.

Variable resistors are available as linear and logarithmic. The resistance
of linear models changes at a constant rate when turning, while the resis-
tance of logarithmic models changes slowly at first and then increases rap-
idly. Logarithmic potentiometers are used more often in audio amplifier
circuits, because they model the human hearing response. Most Arduino
projects use linear variable resistors such as the one shown in Figure 4-35.

Figure 4-34: Variable resistor
(potentiometer) symbol

Figure 4-35: A typical linear variable
resistor

Building Blocks 87

You can also get miniature versions of variable resistors, known as
trimpots or trimmers (see Figure 4-36). Because of their size, trimpots are
more useful for making adjustments in circuits, but they’re also very useful
for breadboard work because they can be slotted in.

Figure 4-36: Various trimpots

N O T E When shopping for trimpots, take note of the type. Often you will want one that is
easy to adjust with a screwdriver that you have on hand, and the enclosed types, as
pictured in Figure 4-36, last longer than the cheaper, open contact types.

Piezoelectric Buzzers
A piezoelectric element (piezo for short), or buzzer, is a small, round device
that can be used to generate loud and annoying noises that are perfect
for alarms—or for having fun. Figure 4-37 shows a common example, the
TDK PS1240, next to an American quarter, to give you an idea of its size.

Figure 4-37: TDK PS1240 Piezo

Piezos contain a very thin plate inside the housing that moves when an
electrical current is applied. When alternating current is applied (such as
on . . . off . . . on . . . off), the plate vibrates and generates sound waves.

It’s simple to use piezos with Arduino because they can be turned on
and off just like an LED. The piezo elements are not polarized and can be
connected in either direction.

88 Chapter 4

Piezo Schematic
The schematic symbol for the piezo looks like a loudspeaker (Figure 4-38),
which makes it easy to recognize.

Figure 4-38: Piezo schematic

N O T E When shopping for a piezo for this project, be sure to get the piezo element only
type; some buzzer types look like Figure 4-38 but include a tone-generating circuit
built into the case. We don’t want those because we’re going to drive our tone directly
from the Arduino.

Project #7: Trying Out a Piezo Buzzer

If you have a piezo handy and want to try it out, upload the following dem-
onstration sketch to your Arduino:

// Project 7 - Trying Out a Piezo Buzzer
#define PIEZO 3 // pin 3 is capable of PWM output to drive tones
int del = 500;
void setup()
{
 pinMode(PIEZO, OUTPUT);
}

void loop()
{

X analogWrite(PIEZO, 128); // 50 percent duty cycle tone to the piezo
 delay(del);
 digitalWrite(PIEZO, LOW); // turn the piezo off
 delay(del);
}

This sketch uses pulse-width modulation on digital pin three. If
you change the duty cycle in the analogWrite() function (currently it’s
128, which is 50 percent on) at X, then you can alter the volume of the
buzzer.

Building Blocks 89

To increase the volume of your piezo, increase the voltage applied to
it. The voltage is currently limited to 5 V, but the buzzer would be much
louder at 9 or 12 V. Because higher voltages can’t be sourced from the
Arduino, you would need to use an external power source for the buzzer,
such as a 9 V battery, and then switch the power into the buzzer using a
transistor as an electronic switch. You can use the same sketch with the
schematic shown in Figure 4-39.

N/C

IO REF

SCL

SDA

RST

AREF

A0

A1

A2

A3

A4

A5

3V3 5V Vin

Analog Input

D11

D10

D9

D8

D7

D6

D5

D4

D3 PWM

TX

RX

PWM

PWM

PWM

PWM

PWM

D2

D1

D13

D12

D0

Di
gi

ta
l I

np
ut

/O
ut

pu
t

Power

Arduino

GND

12V

Q1R1
1kΩ

R2
1kΩ

Figure 4-39: Schematic for Project 7

The part of the schematic labeled 12 V will be the positive side of
the higher-power supply, whose negative side will connect to the Arduino
GND pin.

90 Chapter 4

Project #8: Creating a Quick-Read Thermometer

Temperature can be represented by an analog signal.
We can measure temperature using the TMP36 voltage
output temperature sensor made by Analog Devices
(http://www.analog.com/tmp36/), shown in Figure 4-40.

Notice that the TMP36 looks just like the BC548
transistor we worked with in the relay control circuit
in Chapter 3. The TMP36 outputs a voltage that is pro-
portional to the temperature, so you can determine
the current temperature using a simple conversion.
For example, at 25 degrees Celsius, the output voltage
is 750 mV, and each change in temperature of 1 degree
results in a change of 10 mV. The TMP36 can measure
temperatures between −40 and 125 degrees Celsius.

The function analogRead() will return a value between 0 and 1,023,
which corresponds to a voltage between 0 and just under 5,000 mV (5 V).
If we multiply the output of analogRead() by (5,000/1,024), then we will get
the actual voltage returned by the sensor. Next, we subtract 500 (an offset
used by the TMP36 to allow for temperatures below zero) and then divide
by 10, which leaves us with the temperature in degrees Celsius. If you work in
Fahrenheit, then multiply the Celsius value by 1.8 and add 32 to the result.

The Goal
In this project, we’ll use the TMP36 to create a quick-read thermometer.
When the temperature falls below 20 degrees Celsius, a blue LED turns
on. When the temperature is between 20 and 26 degrees, a green LED
turns on, and when the temperature is above 26 degrees, a red LED turns on.

The Hardware
Here’s what you’ll need to create this project:

x� Three 560 : resistors (R1 to R3)
x� One red LED (LED1)
x� One green LED (LED2)
x� One blue LED (LED3)
x� One TMP36 temperature sensor
x� One breadboard
x� Various connecting wires
x� Arduino and USB cable

Figure 4-40:
TMP36 tempera-
ture sensor

Building Blocks 91

The Schematic
The circuit is simple. When you’re looking at the labeled side of the TMP36,
the pin on the left connects to the 5 V input, the center pin is the voltage
output, and the pin on the right connects to GND as shown in Figure 4-41.

N/C

IO REF

SCL

SDA

RST

AREF

A0

A1

A2

A3

A4

A5

3V3 5V Vin

Analog Input

D11

D10

D9

D8

D7

D6

D5

D4

D3 PWM

TX

RX

PWM

PWM

PWM

PWM

PWM

D2

D1

D13

D12

D0

Di
gi

ta
l I

np
ut

/O
ut

pu
t

Power

Arduino

GND

TMP
36

+Vs

Vout

GND R3
560Ω

R2
560Ω

R1
560Ω

LED3

LED2

LED1

Figure 4-41: Schematic for Project 8

The Sketch
And now for the sketch:

// Project 8 - Creating a Quick-Read Thermometer

// define the pins that the LEDs are connected to:
#define HOT 6
#define NORMAL 4
#define COLD 2

float voltage = 0;
float celsius = 0;

92 Chapter 4

float hotTemp = 26;
float coldTemp = 20;
float sensor = 0;

void setup()
{
 pinMode(HOT, OUTPUT);
 pinMode(NORMAL, OUTPUT);
 pinMode(COLD, OUTPUT);
}

void loop()
{
 // read the temperature sensor and convert the result to degrees Celsius

X sensor = analogRead(0);
 voltage = (sensor*5000)/1024; // convert raw sensor value to millivolts
 voltage = voltage-500; // remove voltage offset
 celsius = voltage/10; // convert millivolts to Celsius

 // act on temperature range

Y if (celsius < coldTemp)
 {
 digitalWrite(COLD, HIGH);
 delay(1000);
 digitalWrite(COLD, LOW);
 }

Z else if (celsius > coldTemp && celsius <= hotTemp)
 {
 digitalWrite(NORMAL, HIGH);
 delay(1000);
 digitalWrite(NORMAL, LOW);
 }
 else
 {
 // celsius is > hotTemp
 digitalWrite(HOT, HIGH);
 delay(1000);
 digitalWrite(HOT, LOW);
 }
}

The sketch first reads the voltage from the TMP36 and converts it to
temperature in degrees Celsius at X. Next, using the if-else functions at Y
and Z, the code compares the current temperature against the values for
hot and cold and turns on the appropriate LED. The delay(1000) statements
are used to prevent the lights from flashing on and off too quickly if the
temperature fluctuates rapidly between two ranges.

Building Blocks 93

Hacking the Sketch
Although this sketch was rather simple, you could use it as the basis for tak-
ing other sorts of readings. You might add a PowerSwitch Tail, for example,
as shown in Figure 4-42.

Figure 4-42: A PowerSwitch Tail that switches up to 120 V AC

With a PowerSwitch Tail, you can safely control an appliance that
runs from the wall socket, such as a heater, lamp, or another device with
a digital output from your Arduino. (For more information, visit http://
www.adafruit.com/products/268/.) For example, you could use a PowerSwitch
Tail to build a temperature-controlled heater or fan, control a garage light
so it runs for a time and then switches off, or remotely control outdoor
Christmas lights.

Looking Ahead
And Chapter 4 comes to a close. You now have a lot more tools to work with,
including digital inputs and outputs, new types of variables, and various
mathematical functions. In the next chapter, you will have a lot more fun
with LEDs, learn to create your own functions, build a computer game and
electronic dice, and much more.

5
W O R K I N G W I T H F U N C T I O N S

In this chapter you will

x� Create your own functions
x� Learn to make decisions with while and do-while
x� Send and receive data between your Arduino and the Serial

Monitor window
x� Learn about long variables

You’ll learn new methods to make your Arduino sketches easier to read
and simpler to design by creating your own functions. You can also create
modular, reusable code that will save you time again and again. We’ll intro-
duce a way to make decisions that control blocks of code, and you’ll learn
about a type of integer variable called the long. Then you will use your own
functions to create a new type of thermometer.

A function consists of a set of instructions that we can use anywhere
in our sketches. Although many functions are available in the Arduino
language, sometimes you won’t find one to suit your specific needs—or
you may need to run part of a sketch repeatedly to make it work, which is
a waste of memory. In both of these situations, you might wish you had a
better function to do what you need to do. The good news is that there is
such a function—the one you create yourself.

96 Chapter 5

Project #9: Creating a Function to Repeat an Action

You can write simple functions to repeat actions on demand. For example,
the following function will turn the built-in LED on (at X and Z) and off
(at Y and [) twice.

void blinkLED()
{

X digitalWrite(13, HIGH);
 delay(1000);

Y digitalWrite(13, LOW);
 delay(1000);

Z digitalWrite(13, HIGH);
 delay(1000);

[digitalWrite(13, LOW);
 delay(1000);
}

Here is the function being used within a complete sketch, which you
can upload to the Arduino:

// Project 9 - Creating a Function to Repeat an Action

#define LED 13
#define del 200

void setup()
{
 pinMode(LED, OUTPUT);
}

void blinkLED()
{
 digitalWrite(LED, HIGH);
 delay(del);
 digitalWrite(LED, LOW);
 delay(del);
 digitalWrite(LED, HIGH);
 delay(del);
 digitalWrite(LED, LOW);
 delay(del);
}

void loop()
{

X blinkLED();
 delay(1000);
}

When the blinkLED() function is called in void loop() at X, the Arduino
will run the commands within the void blinkLED() section. In other words,
you have created your own function and used it when necessary.

Working with Functions 97

Project #10: Creating a Function to Set the Number of Blinks

The function we just created is pretty limited. What if we want to set the
number of blinks and the delay? No problem; we can create a function that
lets us change values, like this:

void blinkLED(int cycles, int del)
{
 for (int z = 0 ; z < cycles ; z++)
 {
 digitalWrite(LED, HIGH);
 delay(del);
 digitalWrite(LED, LOW);
 delay(del);
 }
}

Our new void blinkLED() function accepts two integer values: cycles
(the number of times we want to blink the LED) and del (the delay time
between turning the LED on and off). So if we wanted to blink the LED
12 times, with a 100-millisecond delay, then we would use blinkLED(12, 100).
Enter the following sketch into the IDE to experiment with this function:

// Project 10 - Creating a Function to Set the Number of Blinks

#define LED 13

void setup()
{
 pinMode(LED, OUTPUT);
}

void blinkLED(int cycles, int del)
{
 for (int z = 0 ; z < cycles ; z++)
 {
 digitalWrite(LED, HIGH);
 delay(del);
 digitalWrite(LED, LOW);
 delay(del);
 }
}

void loop()
{

X blinkLED(12, 100);
 delay(1000);
}

You can see at X that the values of 12 and 100 (for the number of
blinks and the delay, respectively) are passed into our custom function

98 Chapter 5

blinkLED(), where cycles will have a value of 12 and del will have a value of
100. Therefore, the LED will blink 12 times with a delay of 100 milliseconds
between blinks.

Creating a Function to Return a Value
In addition to creating functions that accept values entered as parameters
(as void blinkLED() did in Project 10), you can also create functions that return
a value, in the same way that analogRead() returns a value between 0 and 1,023
when measuring an analog input, as demonstrated in Project 8. The void that
appears at the start of functions up to this point means that the function
doesn’t return anything—that is, the function’s return value is void. Let’s
create some useful functions that return actual values.

Consider this function that converts degrees Celsius to Fahrenheit:

float convertTemp(float celsius)
{
 float fahrenheit = 0;
 fahrenheit = (1.8 * celsius) + 32;
 return fahrenheit;
}

In the first line, we define the function name (convertTemp), its return
variable type (float), and any variables that we might want to pass into the
function (float celsius). To use this function, we send it an existing vari-
able. For example, if we wanted to convert 40 degrees Celsius to Fahren-
heit and store the result in a float variable called tempf, then we would call
convertTemp like so:

 tempf = convertTemp(40);

This would place 40 into the convertTemp variable celsius and use it in
the calculation fahrenheit = (1.8 * celsius) + 32 in the convertTemp function.
The result is then returned into the variable tempf with the convertTemp line
return fahrenheit.

Project #11: Creating a Quick-Read Thermometer That
Blinks the Temperature

Now that you know how to create custom functions, we’ll make a quick-
read thermometer using the TMP36 temperature sensor from Chapter 4
and the Arduino’s built-in LED. If the temperature is below 20 degrees
Celsius, the LED will blink twice and then pause; if the temperature falls

Working with Functions 99

between 20 and 26 degrees, the LED will blink four times and then pause;
and if the temperature is above 26 degrees, the LED will blink six times.

We’ll make our sketch more modular by breaking it up into distinct
functions that will make the sketch easier to follow, and the functions will
be reusable. Our thermometer will perform two main tasks: measure and
categorize the temperature, and blink the LED a certain number of times
(determined by the temperature).

The Hardware
The required hardware is minimal:

x� One TMP36 temperature sensor
x� One breadboard
x� Various connecting wires
x� Arduino and USB cable

The Schematic
The circuit is very simple, as shown in Figure 5-1.

N
/C

IO
 R

EF

SC
L

SD
A

RS
T

AR
EF

A0 A1 A2 A3 A4 A5

3V
3

5V
V in

Analog Input

D1
1

D1
0

D9 D8 D7 D6 D5 D4 D3
PW

M

TX RXPW
M

PW
M

PW
M

PW
M

PW
M

D2 D1D1
3

D1
2

D0

Digital Input/Output

Po
w

er

Ar
du

in
o

G
N

D

TM
P

36+V
s

V ou
t

G
N

D

Figure 5-1: Schematic for Project 11

100 Chapter 5

The Sketch
We’ll need to create two functions for the sketch. The first one will read the
value from the TMP36, convert it to Celsius, and then return a value of 2,
4, or 6, corresponding to the number of times the LED should blink. We’ll
alter the sketch from Project 8 for this purpose.

For our second function, we’ll use blinkLed() from Project 9. Our void
loop will call the functions in order and then pause for 2 seconds before
restarting.

N O T E Remember to save your modified project sketches with new filenames so that you don’t
accidentally delete your existing work!

For the sketch, enter this code into the IDE:

// Project 11 - Creating a Quick-Read Thermometer That Blinks the Temperature

#define LED 13

int blinks = 0;

void setup()
{
 pinMode(LED, OUTPUT);
}

int checkTemp()
{
 float voltage = 0;
 float celsius = 0;
 float hotTemp = 26;
 float coldTemp = 20;
 float sensor = 0;
 int result;
 // read the temperature sensor and convert the result to degrees Celsius

 sensor = analogRead(0);
 voltage = (sensor * 5000) / 1024; // convert raw sensor value to millivolts
 voltage = voltage - 500; // remove voltage offset
 celsius = voltage / 10; // convert millivolts to Celsius

 // act on temperature range
 if (celsius < coldTemp)
 {
 result = 2;
 }

Working with Functions 101

else if (celsius >= coldTemp && celsius <= hotTemp)
 {
 result = 4;
 }
 else
 {
 result = 6; // (celsius > hotTemp)
 }
 return result;
}

void blinkLED(int cycles, int del)
{
 for (int z = 0 ; z < cycles ; z++)
 {
 digitalWrite(LED, HIGH);
 delay(del);
 digitalWrite(LED, LOW);
 delay(del);
 }
}

void loop()
{
 blinks = checkTemp();
 blinkLED(blinks, 500);
 delay(2000);
}

Because we use custom functions, all we have to do in void_loop() is call
them and set the delay. The function checkTemp() returns a value to the inte-
ger variable blinks, and then blinkLED() will blink the LED blinks times with
a delay of 500 milliseconds. The sketch then pauses for 2 seconds before
repeating.

Upload the sketch and watch the LED to see this thermometer in
action. (Be sure to keep this circuit assembled, since we’ll use it in the fol-
lowing examples.)

Displaying Data from the Arduino in the Serial Monitor
So far, we have sent sketches to the Arduino and used the LEDs to show us
output (such as temperature and traffic signals). Blinking LEDs make it
easy to get feedback from the Arduino, but blinking lights can tell us only
so much. In this section you’ll learn how to use the Arduino’s cable connec-
tion and the IDE’s Serial Monitor window to display data from the Arduino
and send data to the Arduino from the computer keyboard.

102 Chapter 5

The Serial Monitor
To open the Serial Monitor, start the IDE and click the Serial Monitor icon
button on the tool bar, shown in Figure 5-2. The Serial Monitor should
open and look similar to Figure 5-3.

As you can see in Figure 5-3, the Serial Monitor displays an input
field at the top, consisting of a single row and a Send button, and an out-
put window below it, where data from the Arduino is displayed. When
the Autoscroll box is checked, the most recent output is displayed, and
once the screen is full, older data rolls off the screen as newer output is
received. If you uncheck Autoscroll, you can manually examine the data
using a vertical scroll bar.

Starting the Serial Monitor

Before we can use the Serial Monitor, we need to activate it by adding this
function to our sketch in void setup():

 Serial.begin(9600);

The value 9600 is the speed at which the data will travel between the
computer and the Arduino, also known as baud. This value must match
the speed setting at the bottom right of the Serial Monitor, as shown in
Figure 5-3.

Sending Text to the Serial Monitor

To send text to the Serial Monitor to be displayed in the output window,
you can use Serial.print:

 Serial.print("Arduino for Everyone!");

Figure 5-2: Serial
Monitor icon button
on the IDE tool bar

Figure 5-3: Serial Monitor

Working with Functions 103

This sends the text between the quotation marks to the Serial Monitor’s
output window.

You can also use Serial.println to display text and then force any follow-
ing text to start on the next line:

 Serial.println("Arduino for Everyone!");

Displaying the Contents of Variables

You can also display the contents of variables on the Serial Monitor. For
example, this would display the contents of the variable results:

 Serial.println(results);

If the variable is a float, the display will default to two decimal places.
You can specify the number of decimal places used as a number between 0
and 6 by entering a second parameter after the variable name. For example,
to display the float variable results to four decimal places, you would enter
the following:

 Serial.print(results,4);

Project #12: Displaying the Temperature in the Serial Monitor

Using the hardware from Project 8, we’ll display temperature data in
Celsius and Fahrenheit in the Serial Monitor window. To do this, we’ll cre-
ate one function to determine the temperature values and another to dis-
play them in the Serial Monitor.

Enter this code into the IDE:

// Project 12 - Displaying the Temperature in the Serial Monitor

float celsius = 0;
float fahrenheit = 0;

void setup()
{
 Serial.begin(9600);
}

X void findTemps()
{
 float voltage = 0;
 float sensor = 0;

104 Chapter 5

 // read the temperature sensor and convert the result to degrees C and F
 sensor = analogRead(0);
 voltage = (sensor * 5000) / 1024; // convert the raw sensor value to millivolts
 voltage = voltage - 500; // remove the voltage offset
 celsius = voltage / 10; // convert millivolts to Celsius
 fahrenheit = (1.8 * celsius) + 32; // convert Celsius to Fahrenheit
}

Y void displayTemps()
{
 Serial.print("Temperature is ");
 Serial.print(celsius, 2);
 Serial.print(" deg. C / ");
 Serial.print(fahrenheit, 2);
 Serial.println(" deg. F");
// use .println here so the next reading starts on a new line
}

void loop()
{
 findTemps();
 displayTemps();
 delay(1000);
}

A lot is happening in this sketch, but we’ve created two functions,
findTemps() at X and displayTemps() at Y, to simplify things. These functions
are called in void loop(), which is quite simple. Thus you see one reason to
create your own functions: to make your sketches easier to understand and
the code more modular and possibly reusable.

After uploading the sketch, wait a few seconds, and then display the
Serial Monitor. The temperature in your area should be displayed in a simi-
lar manner to that shown in Figure 5-4.

Figure 5-4: Result from Project 12

Working with Functions 105

Debugging with the Serial Monitor
The Serial Monitor can be used to help debug (locate and fix errors) your
sketch. For example, if you insert Serial.println(); statements in your sketch
containing brief notes about the location in the sketch, then you can see
when the Arduino passes each statement. For example, you might use the line

 Serial.println("now in findTemps()");

inside the function findTemps() to let you know when the Arduino is running
that particular function.

Making Decisions with while Statements
You can use while() statements in a sketch to repeat instructions, as long as
(while) a given condition is true. The condition is always tested before the code
in the while() statement is executed. For example, while (temperature > 30)
will test to determine if the value of temperature is greater than 30. You can
use any comparison operator within the parentheses to create the condition.

In the following listing, the Arduino will count up to 10 seconds and
then continue with its program:

int a = 0; // an integer
while (a < 10)
{
 a = a + 1;
 delay(1000);
}

This sketch starts with the variable a set to 0. It then adds 1 to the value
of a (which starts at 0), waits 1 second (delay(1000)), and then repeats the
process until a has a value of 10 (while (a < 10)). Once a is equal to 10,
the comparison in the while statement is false; therefore, the Arduino will
continue on with the sketch after the while loop brackets.

do-while
In contrast to while, the do-while() structure places the test after the code
within the do-while statement is executed. Here’s an example:

int a = 0; // an integer
do
{
 delay(1000);
 a = a + 1;
} while (a < 100);

In this case, the code between the curly brackets will execute before the
conditions of the test (while (a < 100)) have been checked. As a result,

106 Chapter 5

even if the conditions are not met, the loop will run once. You’ll decide
whether to use a while or a do-while function when designing your particular
project.

Sending Data from the Serial Monitor to the Arduino
To send data from the Serial Monitor to the Arduino, we need the Arduino
to listen to the serial buffer—the part of the Arduino that receives data from
the outside world via the serial pins (digital 0 and 1) that are also connected
to the USB circuit and cable to your computer. The serial buffer holds incom-
ing data from the Serial Monitor’s input window.

Project #13: Multiplying a Number by Two

To demonstrate the process of sending and receiving data via the Serial
Monitor, let’s dissect the following sketch. This sketch accepts a single digit
from the user, multiplies it by 2, and then displays the result in the Serial
Monitor’s output window.

// Project 13 - Multiplying a Number by Two

int number;

void setup()
{
 Serial.begin(9600);
}
void loop()
{
 number = 0; // zero the incoming number ready for a new read
 Serial.flush(); // clear any "junk" out of the serial buffer before waiting

X while (Serial.available() == 0)
 {
 // do nothing until something enters the serial buffer
 }

Y while (Serial.available() > 0)
 {
 number = Serial.read() - '0';
// read the number in the serial buffer,
// remove the ASCII text offset for zero: '0'
 }
 // Show me the number!
 Serial.print("You entered: ");
 Serial.println(number);
 Serial.print(number);
 Serial.print(" multiplied by two is ");
 number = number * 2;
 Serial.println(number);
}

Working with Functions 107

The Serial.available() test in the first while statement at X returns 0 if
nothing is entered yet into the Serial Monitor by the user. In other words, it
tells the Arduino, “Do nothing until the user enters something.” The next
while statement at Y detects the number in the serial buffer and converts
the text code that represents the data entered into an actual integer num-
ber. Afterward, the Arduino displays the number from the serial buffer and
the multiplication results.

The Serial.flush() function at the start of the sketch clears the serial
buffer just in case any unexpected data is in it, readying it to receive the
next available data. Figure 5-5 shows the Serial Monitor window after the
sketch has run.

Figure 5-5: Sample input and output for Project 13

Although you can now enter numerical data into the Serial Monitor for
the Arduino to process, using integer variables limits the range of numbers
available. We can use long variables to increase this range, as discussed next.

long Variables
To use the Serial Monitor to accept numbers with more than one digit, we
need to add some new code to our sketch, as you’ll see shortly. When work-
ing with larger numbers, however, the int variable type can be limiting
because it has a maximum value of 32,767. Fortunately, we can extend this
limitation by using the long variable type. A long variable is a whole number
between −2,147,483,648 and 2,147,483,647, a much larger range than that of
an int variable (−32,768 to 32,767).

Project #14: Using long Variables

We’ll use the Serial Monitor to accept long variables and numbers larger
than one digit. This sketch accepts a number of many digits, multiplies
that number by 2, and then returns the result to the Serial Monitor.

108 Chapter 5

// Project 14 - Using long Variables

long number = 0;
long a = 0;

void setup()
{
 Serial.begin(9600);
}

void loop()
{
 number = 0; // zero the incoming number ready for a new read
 Serial.flush(); // clear any "junk" out of the serial buffer before waiting
 while (Serial.available() == 0)
 {
 // do nothing until something comes into the serial buffer,
 // when something does come in, Serial.available will return how many
 // characters are waiting in the buffer to process
 }
 // one character of serial data is available, begin calculating
 while (Serial.available() > 0)
 {
 // move any previous digit to the next column on the left;
 // in other words, 1 becomes 10 while there is data in the buffer
 number = number * 10;
 // read the next number in the buffer and subtract the character 0
 // from it to convert it to the actual integer number
 a = Serial.read() - '0';
 // add this value a into the accumulating number
 number = number + a;
 // allow a short delay for more serial data to come into Serial.available
 delay(5);
 }
 Serial.print("You entered: ");
 Serial.println(number);
 Serial.print(number);
 Serial.print(" multiplied by two is ");
 number = number * 2;
 Serial.println(number);
}

In this example, two while loops allow the Arduino to accept multiple
digits from the Serial Monitor. When the first digit is entered (the leftmost
digit of the number entered), it is converted to a number and then added
to the total variable number. If that’s the only digit, the sketch moves on. If
another digit is entered (for example, the 2 in 42), then the total is multi-
plied by 10 to shift the first digit to the left, and then the new digit is added
to the total. This cycle repeats until the rightmost digit has been added to
the total.

Figure 5-6 shows the input and output of this sketch.

Working with Functions 109

Figure 5-6: Sample input and output from Project 14

Looking Ahead
Although this chapter may have seemed a little dry, the ability to create
your own functions is an important skill that will simplify your sketches and
save time and effort. You will make good use of this knowledge in the next
chapter.

6
N U M B E R S , V A R I A B L E S , A N D

A R I T H M E T I C

In this chapter you will

x� Generate random numbers
x� Create electronic dice
x� Learn about binary numbers
x� Use shift-register integrated circuits (ICs) to get more digital

output pins
x� Test your knowledge of binary numbers with a quiz
x� Learn about arrays of variables
x� Display numbers on seven-segment LED modules
x� Learn how to use the modulo math function
x� Create a digital thermometer
x� Learn about bitwise arithmetic
x� Create fixed and moving images on LED matrix displays

You will learn a wide variety of useful new functions that will create
more project options, including random number generation, new kinds

112 Chapter 6

of math functions, and variable storage in ordered lists called arrays.
Furthermore, you will learn how to use LED display modules in numeric
and matrix form to display data and simple images. Finally, we put all that
together to create a game, a digital thermometer, and more.

Generating Random Numbers
The ability for a program to generate random numbers can be very useful
in games and effects. For example, you can use random numbers to play a
dice or lottery game with the Arduino, to create lighting effects with LEDs,
or to create visual or auditory effects for a quiz game with the Arduino.
Unfortunately, the Arduino can’t choose a purely random number by itself.
You have to help it by providing a seed, an arbitrary starting number used in
the calculations to generate a random number.

Using Ambient Current to Generate a Random Number
The easiest way to generate a random number with the Arduino is to write a
program that reads the voltage from a free (disconnected) analog pin (for
example, analog pin zero) with this line in void setup():

 randomSeed(analogRead(0));

Even when nothing is wired to an analog input on the Arduino, static
electricity in the environment creates a tiny, measurable voltage. The amount
of this voltage is quite random. We can use this measure of ambient voltage
as our seed to generate a random number and then allocate it to an integer
variable using the random(lower, upper) function. We can use the parameters
lower and upper to set the lower and upper limits of the range for the random
number. For example, to generate a random number between 100 and 1,000,
you would use the following:

int a = 0;
a = random(100, 1001);

We’ve used the number 1,001 rather than 1,000 because the 1,001
upper limit is exclusive, meaning it’s not included in the range.

That said, to generate a random number between 0 and some number,
you can just enter the upper limit. Here’s how you would generate a random
number between 0 and 6:

 a = random(7);

The example sketch in Listing 6-1 would generate random numbers
between 0 and 1,000, as well as numbers between 10 and 50:

// Listing 6-1
int r = 0;

Numbers, Variables, and Arithmetic 113

void setup()
{
 randomSeed(analogRead(0));
 Serial.begin(9600);
}

void loop()
{
 Serial.print("Random number between zero and 1000 is: ");
 r = random(0, 1001);
 Serial.println(r);
 Serial.print("Random number between ten and fifty is: ");
 r = random(10, 51);
 Serial.println(r);
 delay(1000);
}

Listing 6-1: Random number generator

Figure 6-1 shows the result displayed on the Serial Monitor.

Figure 6-1: Output from Listing 6-1

Now that you know how to generate random numbers, let’s put that
knowledge to good use by creating an electronic die.

Project #15: Creating an Electronic Die

Our goal is to light one of six LEDs randomly to mimic the throw of a die.
We’ll choose a random number between 1 and 6, and then turn on the
corresponding LED to indicate the result. We’ll create a function to select
one of six LEDs on the Arduino randomly and to keep the LED on for a
certain period of time. When the Arduino running the sketch is turned on
or reset, it should rapidly show random LEDs for a specified period of time
and then gradually slow until the final LED is lit. The LED matching the
resulting randomly chosen number will stay on until the Arduino is reset
or turned off.

114 Chapter 6

The Hardware
To build the die, we’ll need the following hardware:

x� Six LEDs of any color (LED1 to LED6)
x� One 560 : resistor (R1)
x� Various connecting wires
x� One medium-sized breadboard
x� Arduino and USB cable

The Schematic
Because only one LED will be lit at a time, a single current-limiting resistor
can go between the cathodes of the LEDs and GND. Figure 6-2 shows the
schematic for our die.

N/C

IO REF

SCL

SDA

RST

AREF

A0

A1

A2

A3

A4

A5

3V3 5V Vin

Analog Input

D11

D10

D9

D8

D7

D6

D5

D4

D3 PWM

TX

RX

PWM

PWM

PWM

PWM

PWM

D2

D1

D13

D12

D0

Di
gi

ta
l I

np
ut

/O
ut

pu
t

Power

Arduino

GND

LED5

LED4

LED6

LED1

LED3

LED2

R1

Figure 6-2: Schematic for Project 15

Numbers, Variables, and Arithmetic 115

The Sketch
Here’s the sketch for our die:

// Project 15 - Creating an Electronic Die
void setup()
{
 randomSeed(analogRead(0)); // seed the random number generator
 for (int z = 1 ; z < 7 ; z++) // LEDs on pins 1-6 are output
 {
 pinMode(z, OUTPUT);
 }
}

void randomLED(int del)
{
 int r;
 r = random(1, 7); // get a random number from 1 to 6
 digitalWrite(r, HIGH); // output to the matching LED on digital pin 1-6
 if (del > 0)
 {

X delay(del); // hold the LED on for the delay received
 }

Y else if (del == 0)
 {
 do // the delay entered was zero, hold the LED on
forever
 {}

Z while (1);
 }
 digitalWrite(r, LOW); // turn off the LED
}

void loop()
{
 int a;
 // cycle the LEDs around for effect
 for (a = 0 ; a < 100 ; a++)
 {
 randomLED(50);
 }
 // slow down

[for (a = 1 ; a <= 10 ; a++)
 {
 randomLED(a * 100);
 }
 // and stop at the final random number and LED
 randomLED(0);
}

Here we use a loop in void setup() to activate the digital output pins.
The function randomLED() receives an integer that is used in the delay()
function at X to keep the LED turned on for the selected time. If the

116 Chapter 6

value of the delay received at Y is 0, then the function keeps the LED
turned on indefinitely, because we use

 do {} while (1);

at Z, which loops forever, because 1 is always 1.
To “roll the die,” we reset the Arduino to restart the sketch. To create

a decreasingly slow change in the LEDs before the final value is displayed,
at [we first display a random LED 100 times for 50 milliseconds each time.
Next, we slow it down by increasing the delay between LED flashes from
100 to 1,000 milliseconds, with each flash lasting 100 milliseconds. The
purpose of this is to simulate the “slowing down” of a die before it finally
settles on a value, at which point the Arduino displays the outcome of the
roll by keeping one LED lit with this last line:

 randomLED(0);

Modifying the Sketch
We can tinker with this project in many ways. For example, we could add
another six LEDs to roll two dice at once, or perhaps display the result
using only the built-in LED by blinking it a number of times to indicate the
result of the roll. Use your imagination and new skills to have some fun!

A Quick Course in Binary
Most children learn to count using the base-10 system, but computers (and
the Arduino) count using the binary number system. Binary numbers consist
of only 1s and 0s—for example, 10101010. In binary, each digit from right
to left represents 2 to the power of the column number in which it appears
(which increases from right to left). The products in each column are then
added to determine the value of the number.

For example, consider the binary number 11111111, as shown in Table 6-1.
To convert the number 11111111 in binary to base 10, we add the totals in
each column as listed in the bottom row of the table:

128 + 64 + 32 + 16 + 8 + 4 + 2 + 1

It is 255. A binary number with eight columns (or bits) holds 1 byte of
data; 1 byte of data can have a numerical value between 0 and 255. The left-
most bit is referred to as the Most Significant Bit (MSB), and the rightmost is
the Least Significant Bit (LSB).

Binary numbers are great for storing certain types of data, such as
on/off patterns for LEDs, true/false settings, and the statuses of digital
outputs. Binary numbers are the building blocks of all types of data in
computers.

Numbers, Variables, and Arithmetic 117

Table 6-1: Binary to base-10 number conversion example

27 26 25 24 23 22 21 20

1 1 1 1 1 1 1 1 Binary
128 64 32 16 8 4 2 1 Base 10

Byte Variables
One way we can store binary numbers is by using a byte variable. For example,
we can create the byte variable outputs using the following code:

byte outputs = B11111111;

The B in front of the number tells Arduino to read the number as a
binary number (in this case, 11111111) instead of its base-10 equivalent of
255. Listing 6-2 demonstrates this further.

// Listing 6-2

byte a;

void setup()
{
 Serial.begin(9600);
}

void loop()
{
 for (int count = 0 ; count < 256 ; count++)
 {
 a = count;
 Serial.print("Base-10 = ");

X Serial.print(a, DEC);
 Serial.print(" Binary = ");

Y Serial.println(a, BIN);
 delay(1000);
 }
}

Listing 6-2: Binary number demonstration

We display byte variables as base-10 numbers using DEC X or as binary
numbers using BIN Y as part of the Serial.print() function. After upload-
ing the sketch, you should see output in the Serial Monitor similar to that
shown in Figure 6-3.

118 Chapter 6

Figure 6-3: Output from Listing 6-2

Increasing Digital Outputs with Shift Registers
The Arduino board has 13 digital pins that we can use as outputs—but
sometimes 13 just isn’t enough. To add outputs, we can use a shift register
and still have plenty of room left on the Arduino for outputs. A shift regis-
ter is an integrated circuit (IC) with eight digital output pins that can be
controlled by sending a byte of data to the IC. For our projects, we will be
using the 74HC595 shift register shown in Figure 6-4.

Figure 6-4: The 74HC595 shift register IC

The 74HC595 shift register has eight digital outputs that can operate
like the Arduino digital output pins. The shift register itself takes up three
Arduino digital output pins, so the net gain is five output pins.

The principle behind the shift register is simple: We send 1 byte of
data (8 bits) to the shift register, and it turns on or off the matching eight
outputs based on the 1 byte of data. The bits representing the byte of data
match the output pins in order from highest to lowest. So the leftmost bit
of the data represents output pin 7 of the shift register, and the rightmost
bit of the data represents output pin 0. For example, if we send B10000110 to
the shift register, then it will turn on outputs 7, 2, and 1 and will turn off
outputs 0 and 3–6 until the next byte of data is received or the power is
turned off.

More than one shift register can also be connected together to provide
an extra eight digital output pins for every shift register attached to the
same three Arduino pins; this makes shift registers very convenient when
you want to control lots of LEDs. Let’s do that now by creating a binary
number display.

Numbers, Variables, and Arithmetic 119

Project #16: Creating an LED Binary Number Display

In this project, we’ll use eight LEDs to display binary numbers from 0 to 255.
Our sketch will use a for loop to count from 0 to 255 and will send each
value to the shift register, which will use LEDs to display the binary equiva-
lent of each number.

The Hardware
The following hardware is required:

x� One 74HC595 shift register IC
x� Eight LEDs (LED1 to LED8)
x� Eight 560 : resistors (R1 to R8)
x� One breadboard
x� Various connecting wires
x� Arduino and USB cable

Connecting the 74HC595
Figure 6-5 shows the schematic symbol for the 74HC595.

74HC595
Q1

Q2

Q3

Q4

Q5

Q6

Q7

GND

VCC

Q0

DS

OE

ST_CP

SH_CP

MR

Q7’

16

15

14

13

12

11

10

9

1

2

3

4

5

6

7

8

Figure 6-5: 74HC595 schematic symbol

There are 16 pins on our shift register:

x� Pins 15 and 1 to 7 are the eight output pins that we control (labeled Q0
to Q7, respectively).

x� Q7 outputs the first bit sent to the shift register, down to Q0, which out-
puts the last.

120 Chapter 6

x� Pin 8 connects to GND.
x� Pin 9 is “data out” and is used to send data to another shift register if

one is present.
x� Pin 10 is always connected to 5 V (for example, the 5 V connector on

the Arduino).
x� Pins 11 and 12 are called clock and latch.
x� Pin 13 is called output enable and is usually connected to GND.
x� Pin 14 is for incoming bit data sent from the Arduino.
x� Pin 16 is used for power: 5 V from the Arduino.

To give you a sense of the way pins are oriented, the semicircular notch
on the left end of the body of the shift register IC shown in Figure 6-4 lies
between pins 1 and 16.

The pins are numbered sequentially around the body in a counter-
clockwise direction, as shown in Figure 6-6, the schematic for our LED
binary number display.

74HC595

N/C

IO REF

SCL

SDA

RST

AREF

A0

A1

A2

A3

A4

A5

3V35VVin

An
al

og
 In

pu
t

D11

D10

D9

D8

D7

D6

D5

D4

D3
PWM

TX

RX

PWM

PWM

PWM

PWM

PWM

D2

D1

D13

D12

D0

Digital Input/O
utput

Power

Arduino

GND

R5

R6

R8

R2

R7

R4

R1

R3

LED6

LED5

LED4

LED7

LED2

LED8

LED3

LED1

Q1

Q2

Q3

Q4

Q5

Q6

Q7

GND

VCC

Q0

DS

OE

ST_CP

SH_CP

MR

Q7’

16

15

14

13

12

11

10

9

1

2

3

4

5

6

7

8

Figure 6-6: Schematic for Project 16

N O T E Once you have finished with this example circuit, keep it assembled. We’ll use it again
with the forthcoming project.

Numbers, Variables, and Arithmetic 121

The Sketch
And now for the sketch:

// Project 16 – Creating an LED Binary Number Display
#define DATA 6 // digital 6 to pin 14 on the 74HC595
#define LATCH 8 // digital 8 to pin 12 on the 74HC595
#define CLOCK 10 // digital 10 to pin 11 on the 74HC595

void setup()
{
 pinMode(LATCH, OUTPUT);
 pinMode(CLOCK, OUTPUT);
 pinMode(DATA, OUTPUT);
}

void loop()
{
 int i;
 for (i = 0; i < 256; i++)
 {
 digitalWrite(LATCH, LOW);
 shiftOut(DATA, CLOCK, MSBFIRST, a);
 digitalWrite(LATCH, HIGH);
 delay(200);
 }
}

In this sketch, we set the three pins connected to the shift register as
outputs in void setup() and then add a loop in void loop() that counts from 0
to 255 and repeats. The magic lies inside the loop. When we send a byte of
data (for example, 240, or B11110000) to the shift register in the for loop,
three things happen:

x� The latch pin 12 is set to LOW (that is, a low signal is applied to it from
the Arduino digital output pin 8). This is preparation for setting output
pin 12 to HIGH, which latches the data to the output pins after shiftOut
has completed its task.

x� We send the byte of data (for example, B11110000) from Arduino digi-
tal pin 6 to the shift register and tell the shiftOut function from which
direction to interpret the byte of data. For example, if you selected
LSBFIRST, then LEDs 1 to 4 would turn on and the others would turn
off. If you used MSBFIRST, then LEDs 5 to 8 would turn on and the others
would turn off.

x� Finally, the latch pin 12 is set to HIGH (5 V is applied to it). This tells the
shift register that all the bits are shifted in and ready. At this point it
alters its output to match the data received.

122 Chapter 6

Project #17: Making a Binary Quiz Game

In this project we’ll use random numbers, the Serial Monitor, and the cir-
cuit created in Project 16 to create a binary quiz game. The Arduino will
display a random binary number using the LEDs, and then you will enter
the decimal version of the binary number using the Serial Monitor. The
Serial Monitor will then tell you whether your answer is correct and the
game will continue with a new number.

The Algorithm
The algorithm can be divided into three functions. The displayNumber()
function will display a binary number using the LEDs. The getAnswer() func-
tion will receive a number from the Serial Monitor and display it to the
user. Finally, the checkAnswer() function will compare the user’s number to
the random number generated and display the correct/incorrect status
and the correct answer if the guess was incorrect.

The Sketch
The sketch generates a random number between 0 and 255, displays it in
binary using the LEDs, asks the user for his or her answer, and then displays
the results in the Serial Monitor. You’ve already seen all the functions used
in the sketch, so although there’s a lot of code here, it should look familiar.
We’ll dissect it with comments within the sketch and some commentary
following.

// Project 17 - Making a Binary Quiz Game

#define DATA 6 // connect to pin 14 on the 74HC595
#define LATCH 8 // connect to pin 12 on the 74HC595
#define CLOCK 10 // connect to pin 11 on the 74HC595

int number = 0;
int answer = 0;

X void setup()
{
 pinMode(LATCH, OUTPUT); // set up the 74HC595 pins
 pinMode(CLOCK, OUTPUT);
 pinMode(DATA, OUTPUT);
 Serial.begin(9600);
 randomSeed(analogRead(0)); // initialize the random number generator
 displayNumber(0); // clear the LEDs
}

Y void displayNumber(byte a)
{
 // sends byte to be displayed on the LEDs
 digitalWrite(LATCH, LOW);

Numbers, Variables, and Arithmetic 123

 shiftOut(DATA, CLOCK, MSBFIRST, a);
 digitalWrite(LATCH, HIGH);
}

Z void getAnswer()
{
 // receive the answer from the player
 int z = 0;
 Serial.flush();
 while (Serial.available() == 0)
 {
 // do nothing until something comes into the serial buffer
 }
 // one character of serial data is available, begin calculating
 while (Serial.available() > 0)
 {
 // move any previous digit to the next column on the left; in
 // other words, 1 becomes 10 while there is data in the buffer
 answer = answer * 10;
 // read the next number in the buffer and subtract the character '0'
 // from it to convert it to the actual integer number
 z = Serial.read() - '0';
 // add this digit into the accumulating value
 answer = answer + z;
 // allow a short delay for any more numbers to come into Serial.available
 delay(5);
 }
 Serial.print("You entered: ");
 Serial.println(answer);
}

[void checkAnswer()
{
 //check the answer from the player and show the results
 if (answer == number) // Correct!
 {
 Serial.print("Correct! ");
 Serial.print(answer, BIN);
 Serial.print(" equals ");
 Serial.println(number);
 Serial.println();
 }
 else // Incorrect
 {
 Serial.print("Incorrect, ");
 Serial.print(number, BIN);
 Serial.print(" equals ");
 Serial.println(number);
 Serial.println();
 }
 answer = 0;
 delay(10000); // give the player time to review his or her answers
}

124 Chapter 6

void loop()
{
 number = random(256);
 displayNumber(number);
 Serial.println("What is the binary number in base-10? ");
 getAnswer();
 checkAnswer();
}

Let’s review how the sketch works. At X, void setup() configures the digi-
tal output pins to use the shift register, starts the Serial Monitor, and seeds
the random number generator. At Y, the custom function displayNumber()
accepts a byte of data and sends it to the shift register, which uses LEDs to dis-
play the byte in binary form via the attached LEDs (as in Project 16). At Z, the
custom function getAnswer() accepts a number from the user via the Serial
Monitor (as in Project 14) and displays it, as shown in Figure 6-7.

The function checkAnswer() at [compares the number entered by the
player in getAnswer() against the random number generated by the sketch in
void loop(). The player is then advised of a correct or incorrect answer with
corresponding binary and decimal values. Finally, in the main void loop()
from which the program runs, the Arduino generates the random binary
number for the quiz, then calls the matching functions to display it with
hardware, and then receives and checks the player’s answer.

Figure 6-7 shows the game in play in the Serial Monitor.

Figure 6-7: Project 17 in play

Arrays
An array is a set of variables or values grouped together so that they can be
referenced as a whole. When dealing with lots of related data, you’ll find it a
good idea to use arrays to keep your data organized.

Defining an Array
Each item in an array is called an element. For example, suppose six float
variables contain temperatures taken over the last six hours; instead of

Numbers, Variables, and Arithmetic 125

giving them all separate names, we can define an array called temperatures
with six elements like this:

float temperatures[6];

We can also insert values when defining the array. When we do that, we
don’t need to define the array size. Here’s an example:

float temperatures[]={11.1, 12.2, 13.3, 14.4, 15.5, 16.6};

Notice that this time we didn’t explicitly define the size of the array
within the square brackets ([]); instead, its size is deduced based on the
number of elements set by the values inside the curly brackets ({}).

Referring to Values in an Array
We count the elements in an array beginning from the left and starting
from 0; the temperatures[] array has elements numbered 0 to 5. We can refer
to individual values within an array by inserting the number of the ele-
ment in the square brackets. For example, to change the first element in
temperatures[] (currently 16.6) to 12.34, we would use this:

 temperatures[0] = 12.34;

Writing to and Reading from Arrays
In Listing 6-3, we demonstrate writing values to and reading values from an
array of five elements. The first for loop in the sketch writes a random num-
ber into each of the array’s elements, and the second for loop retrieves the
elements and displays them in the Serial Monitor.

// Listing 6-3

void setup()
{
 Serial.begin(9600);
 randomSeed(analogRead(0));
}
int array[5]; // define our array of five integer elements
void loop()
{
 int i;
 Serial.println();
 for (i = 0 ; i < 5 ; i++) // write to the array
 {
 array[i] = random(10); // random numbers from 0 to 9
 }
 for (i = 0 ; i < 5 ; i++) // display the contents of the array
 {
 Serial.print("array[");

126 Chapter 6

 Serial.print(i);
 Serial.print("] contains ");
 Serial.println(array[i]);
 }
 delay(5000);
}

Listing 6-3: Array read/write demonstration

Figure 6-8 shows the output of this sketch in the Serial Monitor.

Figure 6-8: Listing 6-3 in action

Now that you know how to work with binary numbers, shift registers,
and arrays, it’s time you put that knowledge to work. In the next section,
we’ll wire up some digital number displays.

Seven-Segment LED Displays
LEDs are fun, but there are limits to the kinds of data that can be displayed
with individual lights. In this section we’ll begin working with numeric digits
in the form of seven-segment LED displays, as shown in Figure 6-9.

Figure 6-9: Seven-segment display modules

Numbers, Variables, and Arithmetic 127

These displays are perfect for displaying numbers, and that’s why you’ll
find them used in digital alarm clocks, speedometers, and other numeric
displays. Each module in a seven-segment LED display consists of eight
LEDs. The modules are also available in different colors. To reduce the
number of pins used by the display, all of the anodes or cathodes of the
LEDs are connected together and are called common-anode or common-
cathode, respectively. Our projects will use common-cathode modules.

The display’s LEDs are labeled A to G and DP (for the decimal point).
There is an anode pin for each LED segment, and the cathodes are con-
nected to one common cathode pin. The layout of seven-segment LED
displays is always described as shown in Figure 6-10, with LED segment A at
the top, B to its right, and so on. So, for example, if you wanted to display
the number 7, then you would apply current to segments A, B, and C.

The pins on each LED display module can vary, depending on the
manufacturer, but they always follow the basic pattern shown in Figure 6-10.
When you use one of these modules, always get the data sheet for the mod-
ule from the retailer to help save you time determining which pins are which.

We’ll use the schematic symbol shown in Figure 6-11 for our seven-
segment LED display modules.

Controlling the LED
We’ll control the LED display using the method discussed in Project 17, by
connecting pins A through DP to the shift register outputs Q0 to Q7. Use
the matrix shown in Table 6-2 as a guide to help you determine which seg-
ments to turn on and off to display a particular number or letter.

The top row in the matrix is the shift register output pin that controls
the segments on the second row. Each row below this shows the digit that
can be displayed with the corresponding binary and decimal value to send
to the shift register.

A

B

C

D

E

F

G

DP

Figure 6-10: LED map for a
typical seven-segment display
module

Cathode

A
B
C
D E

F

G
DP

Figure 6-11: Schematic
symbol for a seven-segment
display module

128 Chapter 6

Table 6-2: Display Segment Matrix

SR Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

Segment A B C D E F G DP Decimal

0 1 1 1 1 1 1 0 0 252

1 0 1 1 0 0 0 0 0 96

2 1 1 0 1 1 0 1 0 218

3 1 1 1 1 0 0 1 0 242

4 0 1 1 0 0 1 1 0 102

5 1 0 1 1 0 1 1 0 182

6 1 0 1 1 1 1 1 0 190

7 1 1 1 0 0 0 0 0 224

8 1 1 1 1 1 1 1 0 254

9 1 1 1 1 0 1 1 0 246

A 1 1 1 0 1 1 1 0 238

B 0 0 1 1 1 1 1 0 62

C 1 0 0 1 1 1 0 0 156

D 0 1 1 1 1 0 1 0 122

E 1 0 0 1 1 1 1 0 158

F 1 0 0 0 1 1 1 0 142

For example, to display the digit 7 as shown in Figure 6-12, we need to
turn on LED segments A, B, and C, which correspond to the shift register
outputs Q0, Q1, and Q2. Therefore, we will send the byte B1110000 into the
shift register (with shiftOut set to LSBFIRST) to turn on the first three outputs
that match the desired LEDs on the module.

Cathode

A

B

C

D E

F

G
DP

Figure 6-12: Displaying the digit 7

In the next example, we’ll create a circuit that displays, in turn, the
digits 0 through 9 and then the letters A through F. The cycle repeats with
the decimal-point LED turned on.

Numbers, Variables, and Arithmetic 129

Project #18: Creating a Single-Digit Display

In this project we’ll assemble a circuit to use a single-digit display.

The Hardware
The following hardware is required:

x� One 74HC595 shift register IC
x� One common-cathode seven-segment LED display
x� Eight 560 : resistors (R1 to R8)
x� One large breadboard
x� Various connecting wires
x� Arduino and USB cable

The Schematic
The schematic is shown in Figure 6-13.

RST

AREF

A0

A1

A2

A3

A4

A5

3V35VVin

An
al

og
 In

pu
t

D11

D10

D9

D8

D7

D6

D5

D4

D3
PWM

TX

RX

PWM

PWM

PWM

PWM

PWM

D2

D1

D13

D12

D0

Digital Input/O
utput

Power

Arduino

GND
74HC595

R1

R2
R3

R4
R5

R6
R7

R8

Q1

Q2

Q3

Q4

Q5

Q6

Q7

GND

VCC

Q0

DS

OE

ST_CP

SH_CP

MR

Q7’

16

15

14

13

12

11

10

9

1

2

3

4

5

6

7

8

Figure 6-13: Schematic for Project 18

When wiring the LED module to the shift register, LED pins A through
G connect to pins Q0 through Q6, respectively, and DP connects to Q7.

130 Chapter 6

The Sketch
In the sketch for Project 18, we store the decimal values (see Table 6-2) in
the int digits[] array. In the void loop, we send these values to the shift reg-
ister in sequential order at X and then repeat the process with the decimal
point on by adding 1 to the value sent to the shift register at Y:

// Project 18 - Creating a Single-Digit Display
#define DATA 6 // connect to pin 14 on the 74HC595
#define LATCH 8 // connect to pin 12 on the 74HC595
#define CLOCK 10 // connect to pin 11 on the 74HC595

// set up the array with the segments for 0 to 9, A to F (from Table 6-2)
int digits[] = {252, 96, 218, 242, 102, 182, 190, 224, 254, 246, 238, 62, 156,
122, 158, 142};

void setup()
{
 pinMode(LATCH, OUTPUT);
 pinMode(CLOCK, OUTPUT);
 pinMode(DATA, OUTPUT);
}

void loop()
{
 int i;
 for (i = 0 ; i < 16 ; i++) // display digits 0-9, A-F
 {
 digitalWrite(LATCH, LOW);

X shiftOut(DATA, CLOCK, LSBFIRST, digits[i]);
 digitalWrite(LATCH, HIGH);
 delay(250);
 }
 for (i = 0 ; i < 16 ; i++) // display digits 0-9, A-F with DP
 {
 digitalWrite(LATCH, LOW);

Y shiftOut(DATA, CLOCK, LSBFIRST, digits[i]+1); // +1 is to turn on the DP bit
 digitalWrite(LATCH, HIGH);
 delay(250);
 }
}

Seven-segment LCD displays are bright and easy to read. For example,
Figure 6-14 shows the digit 9 with the decimal point displayed as a result of
this sketch.

Numbers, Variables, and Arithmetic 131

Figure 6-14: Digit displayed by Project 18

Displaying Double Digits
To use more than one shift register to control additional digital outputs,
connect pin 9 of the 74HC595 (which receives data from the Arduino) to
pin 14 of the second shift register. Once you’ve made this connection, 2 bytes
of data will sent: the first to control the second shift register and the second
to control the first shift register. Here’s an example:

 digitalWrite(LATCH, LOW);
 shiftOut(DATA, CLOCK, MSBFIRST, 254); // data for second 74HC595
 shiftOut(DATA, CLOCK, MSBFIRST, 254); // data for first 74HC595
 digitalWrite(LATCH, HIGH);

Project #19: Controlling Two Seven-Segment LED
Display Modules

This project will show you how to control two, seven-segment LED display
modules so that you can display two-digit numbers.

The Hardware
The following hardware is required:

x� Two 74HC595 shift register ICs
x� Two common-cathode seven-segment LED displays
x� Sixteen 560 : resistors (R1 to 16)
x� One large breadboard
x� Various connecting wires
x� Arduino and USB cable

132 Chapter 6

The Schematic
Figure 6-15 shows the schematic for two display modules.

RST

AREF

A0A1A2A3A4A5

3V3
5V

V
in

Analog Input

D11

D10

D9D8D7D6D5D4D3
PW

M

TXRX PW
M

PW
M

PW
M

PW
M

PW
M

D2D1

D13

D12

D0

Digital Input/Output

Pow
er

Arduino

G
N

D

74
H

C
59

5

74
H

C
59

5
R1 R9

R2 R10R3 R11R4 R12R5 R13R6 R14
R7 R15R8 R16

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

G
N

D

V C
C

Q
0 DS O
E

ST
_C

P

SH
_C

P

M
R

Q
7’

16 15 14 13 12 11 10 9

1 2 3 4 5 6 7 8

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

G
N

D

V C
C

Q
0 DS O
E

ST
_C

P

SH
_C

P

M
R

Q
7’

16 15 14 13 12 11 10 9

1 2 3 4 5 6 7 8

Figure 6-15: Schematic for Project 19

Note that the shift registers’ data and clock pins are connected to each
other and then to the Arduino. The data line from Arduino digital pin 6
runs to shift register 1, and then a link from pin 9 of shift register 1 runs to
pin 14 of shift register 2.

To display a number between 0 and 99, we’ll need a more complicated
sketch. If a number is less than 10, then we can just send the number followed
by a 0, as the right digit displays the number and the left digit displays 0.
However, if the number is greater than 10, then we need to determine each
of the number’s two digits and send each to the shift registers separately. To
make this process easier, we’ll use the math function modulo.

Numbers, Variables, and Arithmetic 133

Modulo
Modulo is a function that returns the remainder of a division operation.
For example, 10 modulo (or mod) 7 equals 3—in other words, the remain-
der of 10 divided by 7 equals 3. We use the percent sign (%) to represent
modulo. The following example uses modulo in a sketch:

int a = 8;
int b = 3;
c = a % b;

In this example, the value of c will be 2. So to determine a two-digit
number’s right-hand digit, we use the modulo function, which returns the
remainder when dividing the two numbers.

To automate displaying a single- or double-digit number, we’ll create the
function displayNumber() for our sketch. We use modulo as part of this func-
tion to separate the digits of a two-digit number. For example, to display the
number 23, we first isolate the left-hand digit by dividing 23 by 10, which
equals 2 (and a fraction that we can ignore). To isolate the right-hand digit,
we perform 23 modulo 10, which equals 3.

// Project 19 - Controlling Two Seven-Segment LED Display Modules
// set up the array with the segments for 0 to 9, A to F (from Table 6-2)
int digits[] = {252, 96, 218, 242, 102, 182, 190, 224, 254, 246, 238, 62, 156,
122, 158, 142};

void displayNumber(int n)
{
 int left, right=0;

X if (n < 10)
 {
 digitalWrite(LATCH, LOW);
 shiftOut(DATA, CLOCK, LSBFIRST, digits[n]);
 shiftOut(DATA, CLOCK, LSBFIRST, 0);
 digitalWrite(LATCH, HIGH);
 }
 else if (n >= 10)
 {

Y right = n % 10; // remainder of dividing the number to display by 10
 left = n / 10; // quotient of dividing the number to display by 10
 digitalWrite(LATCH, LOW);
 shiftOut(DATA, CLOCK, LSBFIRST, digits[right]);
 shiftOut(DATA, CLOCK, LSBFIRST, digits[left]);
 digitalWrite(LATCH, HIGH);
 }
}

Z void loop()
{
 int i;
 for (i = 0 ; i < 100 ; i++)

134 Chapter 6

 {
 displayNumber(i);
 delay(100);
 }
}

At X, the function checks to see if the number to be displayed is less
than 10. If so, it sends the data for the number and a blank digit to the shift
registers. However, if the number is greater than 10, then the function
uses modulo and division at Y to separate the digits and then sends them
to the shift registers separately. Finally, in void loop() at Z we set up and call
the function to display the numbers from 0 to 99.

Project #20: Creating a Digital Thermometer

In this project we’ll add the TMP36 temperature sensor we created in
Chapter 4 to the double-digit circuit constructed for Project 19 to create a
digital thermometer. The algorithm is simple: we read the voltage returned
from the TMP36 (using the method from Project 12) and convert the read-
ing to degrees Celsius.

The Hardware
The following hardware is required:

x� The double-digit circuit from Project 19
x� One TMP36 temperature sensor

Connect the center output lead of the TMP36 to analog pin 5, the left
lead to 5 V, and the right lead to GND, and you’re ready to measure.

The Sketch
Here is the sketch:

// Project 20 - Creating a Digital Thermometer
#define DATA 6 // connect to pin 14 on the 74HC595
#define LATCH 8 // connect to pin 12 on the 74HC595
#define CLOCK 10 // connect to pin 11 on the 74HC595

int temp = 0;
float voltage = 0;
float celsius = 0;
float sensor = 0;
int digits[]={
 252, 96, 218, 242, 102, 182, 190, 224, 254, 246, 238, 62, 156, 122, 158, 142};

void setup()
{
 pinMode(LATCH, OUTPUT);

Numbers, Variables, and Arithmetic 135

 pinMode(CLOCK, OUTPUT);
 pinMode(DATA, OUTPUT);
}

void displayNumber(int n)
{
 int left, right = 0;
 if (n < 10)
 {
 digitalWrite(LATCH, LOW);
 shiftOut(DATA, CLOCK, LSBFIRST, digits[n]);
 shiftOut(DATA, CLOCK, LSBFIRST, digits[0]);
 digitalWrite(LATCH, HIGH);
 }
 if (n >= 10)
 {
 right = n % 10;
 left = n / 10;
 digitalWrite(LATCH, LOW);
 shiftOut(DATA, CLOCK, LSBFIRST, digits[right]);
 shiftOut(DATA, CLOCK, LSBFIRST, digits[left]);
 digitalWrite(LATCH, HIGH);

 }
}

void loop()
{
 sensor = analogRead(5);
 voltage = (sensor * 5000) / 1024; // convert raw sensor value to millivolts
 voltage = voltage - 500; // remove voltage offset
 celsius = voltage / 10; // convert millivolts to Celsius
 temp = int(celsius); // change the floating point temperature to an int
 displayNumber(temp);
 delay(500);
}

The sketch is simple and borrows code from previous projects:
displayNumber() from Project 19 and the temperature calculations from
Project 12. The delay(500); function in the second-to-last line of the sketch
keeps the display from changing too quickly when the temperature
fluctuates.

LED Matrix Display Modules
If you enjoyed experimenting with blinking LEDs, then you’re going to love
LED matrix modules. An LED matrix module consists of several rows and col-
umns of LEDs that you can control individually or in groups. The example
that we’ll use (shown in Figure 6-16) has eight rows and eight columns of
red LEDs for a total of 64 LEDs.

136 Chapter 6

Figure 6-16: LED matrix

In this project we’ll build one circuit, and then we’ll use various
sketches to create different effects.

The LED Matrix Schematic
The schematic symbol for the matrix looks a bit complex, as shown in
Figure 6-17.

COL.

RO
W

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

②

①

⑦

⑤

⑫

⑧

⑭

⑨

⑬ ③ ④ ⑩ ⑥ ⑪ ⑮ ⑯

PI
N

PIN

Figure 6-17: LED matrix schematic symbol

Notice that the numbering of the rows and columns of LEDs does not
match the order of the pins beneath the matrix; see the circled pin num-
bers in Figure 6-17. On the underside of our matrix, pin 1 is indicated at
the bottom right. For example, in Figure 6-18, you can see a tiny 1 printed
below the pin.

Numbers, Variables, and Arithmetic 137

Figure 6-18: Pins on the LED matrix with a
tiny 1 printed below the bottom-right pin

The pins on the LED matrix are numbered clockwise, with pin 8 at
the bottom left and pin 16 at the top right. We’ll control the matrix with
two 74HC595 shift registers in a way that’s similar to the method used in
Project 19.

Figure 6-19 shows the schematic for our project. Resistors R1 through
R8 are 560 ohms each. One shift register controls the rows of LEDs, and
the other controls the columns. The LED matrix (not shown here) is con-
nected to the outputs at the bottom of this schematic with the pin connec-
tions listed in Table 6-3.

Table 6-3: Matrix to 74HC595 link table

Row SR Pin Matrix Pin Column SR Pin Matrix Pin

15 9 15 13
1 14 1 3
2 8 2 4
3 12 3 10
4 1 4 6
5 7 5 11
6 2 6 15
7 5 7 16

Making the Connections
Make the connections between the shift registers and the LED matrix (don’t
forget the resistors between the output pins of the shift register, which con-
trols the matrix rows, and the matrix row pins), as shown in Table 6-3.

138 Chapter 6

N/C

IO REF

SCL

SDA

RST

AREF

A0

A1

A2

A3

A4

A5

3V35VVin

An
al

og
 In

pu
t

D11

D10

D9

D8

D7

D6

D5

D4

D3
PWM

TX

RX

PWM

PWM

PWM

PWM

PWM

D2

D1

D13

D12

D0

Digital Input/O
utput

Power

Arduino

GND

R8

R7

R6

R5

R4

R3

R2

R1

74HC595
Q1

Q2

Q3

Q4

Q5

Q6

Q7

GND

VCC

Q0

DS

OE

ST_CP

SH_CP

MR

Q7’

16

15

14

13

12

11

10

9

1

2

3

4

5

6

7

8

74HC595
Q1

Q2

Q3

Q4

Q5

Q6

Q7

GND

VCC

Q0

DS

OE

ST_CP

SH_CP

MR

Q7’

16

15

14

13

12

11

10

9

1

2

3

4

5

6

7

8

Row
s

C
olum

ns

Figure 6-19: Matrix circuit schematic

Numbers, Variables, and Arithmetic 139

Now to get the matrix working. The shift register marked “rows” in
Figure 6-19 allows current to flow into each row of the matrix, and the “col-
umns” shift register allows current to flow from each of the columns of the
matrix to GND. We’ll use a simple sketch to test the setup in the next proj-
ect. To turn on an LED, we need to control the matching row and column
pins of the shift registers.

Bitwise Arithmetic
We can use bitwise arithmetic to manipulate integer and byte variables using
their binary representations. The value in using bitwise arithmetic, rather
than base-10 arithmetic, is that bitwise can help increase the speed of
controlling digital input and output pins and can compare numbers in
binary form.

There are six bitwise operators: AND, OR, XOR, NOT, bitshift left, and
bitshift right. Each is discussed in the following sections. (Although these
examples use binary numbers, the same operations could be performed
using integers and bytes.)

The Bitwise AND Operator
The AND operator (&) is used to compare two binary numbers bit by bit.
If the bits in the same column of both numbers are 1, then the resulting
value’s bit is set to 1; if the bits are not 1, then the result is set to 0. Consider,
for example, these 3-byte variables:

byte a = B00110011;
byte b = B01010001;
byte c = 0;

The result of the comparison

 c = a & b;

will be 00010001. Expanding this result in a text-comment diagram can
show this in more detail:

byte a = B00110011;
// ||||||||
byte b = B01010001;
// ||||||||
// 00010001 c = a & b; // c is equal to a 'AND'ed with b

The Bitwise OR Operator
The OR operator (|) compares two binary numbers, but instead of return-
ing a 1 if both numbers in a column are 1, it returns a 1 if either value in the
column is 1. If both numbers in a column are 0, then 0 is returned.

140 Chapter 6

Using the same demonstration bytes as before,

byte a = B00110011;
byte b = B01010001;
byte c = 0;

the result of the comparison

 c = a | b;

will be 01110011.

The Bitwise XOR Operator
The XOR operator (^) returns a 1 result if the bits are different and a 0
result if they are the same.

Using our demonstration bytes again,

byte a = B00111100;
byte b = B01011010;
byte c = 0;

the result of the comparison

 c = a ^ b;

will be 01100110.

The Bitwise NOT Operator
The NOT operator (~) simply reverses, or flips, the bits in each column: 0s
are changed to 1s, and 1s are changed to 0s. Consider this example: If we
store a bitwise NOT of byte a in byte b like so,

byte a = B00111100;
byte b = 0;
b = ~a;

then b contains 11000011.

Bitshift Left and Right
The bitshift left (<<) and bitshift right (>>) operators move bits to the left or
right by a certain number of positions. For example, if the contents of a are
shifted left four spaces, like so,

byte a = B00100101;
byte b = a << 4;

Numbers, Variables, and Arithmetic 141

then the result is the value 01010000 for b. The bits in a are moved left four
spaces, and the empty spaces are filled with 0s.

If we shift in the other direction, like so,

byte a = B11110001;
byte b = a >> 4;

then the value for b will be 00001111.

Project #21: Creating an LED Matrix

The purpose of this project is to demonstrate the use of the LED matrix;
we’ll turn on every second column and row in the matrix, as shown in
Figure 6-20.

7 6 5 4 3 2 1 0
7
6
5
4
3
2
1
0

Column byte

Row
 byte

Figure 6-20: Checkerboard matrix template

To create this display pattern, we’ll send B10101010 to the rows shift reg-
ister and ~B10101010 to the columns shift register. The 1s and 0s in each byte
match the rows and columns of the matrix.

N O T E Note the use of the bitwise NOT (~) on the columns byte. A columns shift register bit
needs to be 0 to turn on an LED from the column connections. However, a rows shift
register bit needs to be 1 to turn on the LED from the rows connections. Therefore, we
use the bitwise arithmetic ~ to invert the byte of data being sent to the second shift reg-
ister that drives the columns.

To create the effect shown in Figure 6-20, use the following sketch:

// Project 21 – Creating an LED Matrix
#define DATA 6 // connect to pin 14 on the 74HC595
#define LATCH 8 // connect to pin 12 on the 74HC595
#define CLOCK 10 // connect to pin 11 on the 74HC595

142 Chapter 6

void setup()
{
 pinMode(LATCH, OUTPUT);
 pinMode(CLOCK, OUTPUT);
 pinMode(DATA, OUTPUT);
}

void loop()
{
 digitalWrite(LATCH, LOW);
 shiftOut(DATA, CLOCK, MSBFIRST, ~B10101010); // columns
 shiftOut(DATA, CLOCK, MSBFIRST, B10101010); // rows
 digitalWrite(LATCH, HIGH);
 do {} while (1); // do nothing
}

The result is shown in Figure 6-21. We have turned on every other LED
inside the matrix to form a checkerboard pattern.

Figure 6-21: Result of Project 21

Project #22: Creating Images on an LED Matrix

To display an image or pattern on the LED matrix, we need a function that
turns on only one LED at a time. However, to display an image, we need to
turn on and off the LEDs that represent the image very quickly in order
to create persistence of vision (POV) effects. Persistence of vision produces an
image that remains in our eye for a fraction of a second after the image is
gone. We can harness this effect to create custom images by “scanning” the
matrix to display one row of LEDs at a time, very quickly. This technique
can be useful for creating animation, for displaying data, and for creating
various other artistic effects.

We will demonstrate controlling individual LEDs in the next two proj-
ects. In the following sketch, the function void setLED() accepts a row and
column number and the duration to keep the LED turned on. Then it ran-
domly turns on LEDs one at a time.

Numbers, Variables, and Arithmetic 143

// Project 22 - Creating Images on an LED Matrix
#define DATA 6 // connect to pin 14 on the 74HC595
#define LATCH 8 // connect to pin 12 on the 74HC595
#define CLOCK 10 // connect to pin 11 on the 74HC595

void setup()
{
 pinMode(LATCH, OUTPUT);
 pinMode(CLOCK, OUTPUT);
 pinMode(DATA, OUTPUT);
 randomSeed(analogRead(0));
}

X int binary[] = {1, 2, 4, 8, 16, 32, 64, 128};
int r, c = 0;

void setLED(int row, int column, int del)
{
 digitalWrite(LATCH, LOW);
 shiftOut(DATA, CLOCK, MSBFIRST, ~binary[column]); // columns
 shiftOut(DATA, CLOCK, MSBFIRST, binary[row]); // rows
 digitalWrite(LATCH, HIGH);
 delay(del);
}

void loop()
{
 r = random(8);
 c = random(8);
 setLED(r, c, 1); // set a random row and column on for 1 millisecond
}

Instead of sending binary numbers directly to the shiftOut() functions
to control which lights are turned on, we use a lookup table in the form of
an array, int binary[], at X. This lookup table contains the decimal equiva-
lent for each bit of the byte sent to the shift register. For example, to turn
on the LED at row 4, column 4, we send binary[3] (which is 8, or B00001000)
to both shift registers (with the addition of ~ for the column). This is a
convenient way of converting desired row
or column numbers into a form the shift
register can use; you don’t need to think in
binary, just the row or column you need to
turn on.

By running Project 22 with a delay of
1 millisecond, the LEDs turn on and off so
fast that the eye perceives that more than
one LED is lit at a time; this demonstrates
the concept of POV: It creates the illusion
that more than one LED is lit at once,
when in fact only one LED is lit at once. An
example of this is shown in Figure 6-22. Figure 6-22: Project 22 at work

144 Chapter 6

Project #23: Displaying an Image on an LED Matrix

In this project we’ll display the image on the matrix shown in Figure 6-23.

7 6 5 4 3 2 1 0
7
6
5
4
3
2
1
0

Column byte

Row
 byte

Figure 6-23: Layout for our POV
display example

We can define each row as a binary number and place these numbers in
an array:

byte smile[] = {B00000000,
 B00000110,
 B01000110,
 B00000000,
 B00011000,
 B00000000,
 B11000011,
 B01111110};

Notice how the 1s in the array resemble the lit LEDs in the layout
in Figure 6-23. Our use of binary numbers makes developing an image
very easy. By experimenting with MSBFIRST and LSBFIRST in the shiftOut() func-
tions, you can flip each row around, as shown next. We use a for loop at X
to display each row in turn:

// Project 23 - Displaying an Image on an LED Matrix
#define DATA 6 // connect to pin 14 on the 74HC595
#define LATCH 8 // connect to pin 12 on the 74HC595
#define CLOCK 10 // connect to pin 11 on the 74HC595

byte smile[] = {B00000000, B00000110, B01000110, B00000000, B00011000,
B00000000, B11000011, B01111110};
int binary[] = {1, 2, 4, 8, 16, 32, 64, 128};

void setup()
{
 pinMode(LATCH, OUTPUT);
 pinMode(CLOCK, OUTPUT);

Numbers, Variables, and Arithmetic 145

 pinMode(DATA, OUTPUT);
}

void loop()
{
 int i;

X for (i = 0 ; i < 8 ; i++)
 {
 digitalWrite(LATCH, LOW);
 shiftOut(DATA, CLOCK, MSBFIRST, ~smile[a]); // columns
 shiftOut(DATA, CLOCK, LSBFIRST, binary[a]); // rows
 digitalWrite(LATCH, HIGH);
 delay(1);
 }
}

The result is a winking smiley face, as shown in Figure 6-24.

Figure 6-24: Result of Project 23

Project #24: Animating an LED Matrix

Using some bitwise arithmetic, we can scroll the image we created in
Project 23 off the display in either direction. For example, to have the face
move to the right until its gone, we display the image, then shift each bit in
the row over by one using >>, and then display the image again.

The Sketch
Here’s the sketch for our animation demonstration:

// Project 24 - Animating an LED Matrix
#define DATA 6 // connect to pin 14 on the 74HC595
#define LATCH 8 // connect to pin 12 on the 74HC595
#define CLOCK 10 // connect to pin 11 on the 74HC595

146 Chapter 6

byte smile[] = {B00000000, B00000110, B01000110, B00000000, B00011000,
B00000000, B11000011, B01111110};
int binary[] = {1, 2, 4, 8, 16, 32, 64, 128};

void setup()
{
 pinMode(LATCH, OUTPUT);
 pinMode(CLOCK, OUTPUT);
 pinMode(DATA, OUTPUT);
}

void loop()
{
 int a, hold, shift;

X for (shift = 0 ; shift < 9 ; shift++)
 {

Y for (hold = 0 ; hold < 25 ; hold++)
 {
 for (a = 0 ; a < 8 ; a++)
 {
 digitalWrite(LATCH, LOW);

Z shiftOut(DATA, CLOCK, MSBFIRST, ~smile[a]>>shift); // columns
 shiftOut(DATA, CLOCK, LSBFIRST, binary[a]); // rows
 digitalWrite(LATCH, HIGH);
 delay(1);
 }
 }
 }
}

The sketch holds the image on the matrix for 25 display cycles using a
for loop at Y. The variable shift is the amount by which each byte will shift
to the right. After each loop has completed, the variable shift is increased
by 1 as shown at X. Next, the display cycles repeat, and the image moves to
the right by one LED column. By changing MSBFIRST to LSBFIRST in the third
for loop at Z, we can change the direction that the face scrolls.

Looking Ahead
In this chapter you have learned a lot of fundamental skills that will be
used over and over in your own projects. LED displays are relatively hardy,
so enjoy experimenting with them and making various display effects.
However, there is a limit to what can be displayed, so in the next chapter
we make use of much more detailed display methods for text and graphics.

7
L I Q U I D C R Y S T A L D I S P L A Y S

In this chapter you will

x� Use character LCD modules to display text and numeric data
x� Create custom characters to display on character LCD modules
x� Use large graphic LCD modules to display text and data
x� Create a temperature history graphing thermometer display

For some projects, you’ll want to display information to the user some-
where other than a desktop computer monitor. One of the easiest and
most versatile ways to display information is with a liquid crystal display
(LCD) module and your Arduino. You can display text, custom characters,
numeric data using a character LCD module, and graphics with a graphic
LCD module.

148 Chapter 7

Character LCD Modules
LCD modules that display characters such as text and numbers are the most
inexpensive and simplest to use of all LCDs. They can be purchased in vari-
ous sizes, which are measured by the number of rows and columns of char-
acters they can display. Some include a backlight and allow you to choose
the color of the character and the background color. Any LCD with an
HD44780- or KS0066-compatible interface should work with your Arduino.
The first LCD we’ll use is a 16-character–by–2-row LCD module with a
backlight, as shown in Figure 7-1.

Figure 7-1: Example LCD with trimpot and header pins

The trimpot (the variable resistor for the LCD) has a value of 10 k:
and is used to adjust the display contrast. The header pins are soldered
into the row of holes along the top of the LCD to make insertion into
our breadboard straightforward. The holes along the top of the LCD are
numbered 1 through 16. Number 1 is closest to the corner of the mod-
ule and marked as VSS (connected to GND) in the schematic shown in
Figure 7-2. We’ll refer to this schematic for all of the LCD examples in
this book.

Liquid Crystal Displays 149

LCD1

LC
D

VSS

VCC

V0

RS

R/W

E

DB0

DB1

DB2

DB3

DB4

DB5

DB6

DB7

LED+

LED−

N/C

IO REF

SCL

SDA

RST

AREF

A0

A1

A2

A3

A4

A5

3V3 5V Vin

Analog Input

D11

D10

D9

D8

D7

D6

D5

D4

D3 PWM

TX

RX

PWM

PWM

PWM

PWM

PWM

D2

D1

D13

D12

D0

Di
gi

ta
l I

np
ut

/O
ut

pu
t

Power

Arduino

GND

10kΩ

Figure 7-2: Basic LCD schematic

Using a Character LCD in a Sketch
To use the character LCD shown in Figure 7-1, we will first explain the
required functions and how they work through some simple demonstra-
tions. Enter and upload the basic sketch shown in Listing 7-1:

// Listing 7-1
#include <LiquidCrystal.h>
LiquidCrystal lcd(4, 5, 6, 7, 8, 9); // pins for RS, E, DB4, DB5, DB6, DB7
void setup()
{
 lcd.begin(16, 2);
 lcd.clear();
}
void loop()
{
 lcd.setCursor(0, 5);
 lcd.print("Hello");

150 Chapter 7

 lcd.setCursor(1, 6);
 lcd.print("world!");
 delay(10000);
}

Listing 7-1: LCD demonstration sketch

Figure 7-3 shows the result of Listing 7-1.

Figure 7-3: LCD demonstration: “Hello world!”

Now to see how the sketch in Listing 7-1 works. First we need to include
two initial lines in the sketch. Their purpose is to include the library for
LCD modules (which is automatically installed with the Arduino IDE), and
then we need to tell the library which pins are connected to the Arduino.
To do this, we add the following lines before the void setup() method:

#include <LiquidCrystal.h>
LiquidCrystal lcd(4, 5, 6, 7, 8, 9); // pins for RS, E, DB4, DB5, DB6, DB7

If you need to use different digital pins on the Arduino, adjust the pin
numbers in the second line of this code.

Next, in void setup(), we tell the Arduino the size of the LCD in columns
and rows. For example, here’s how we’d tell the Arduino that the LCD has
two rows of 16 characters each:

 lcd.begin(16, 2);

Displaying Text
With the LCD setup complete, clear the LCD’s display with the following:

 lcd.clear();

Then, to position the cursor, which is the starting point for the text,
use this:

 lcd.setCursor(x, y);

Here, x is the column (0 to 15) and y is the row (0 or 1). So, for example,
to display the word text, you would enter the following:

 lcd.print("text");

Liquid Crystal Displays 151

Now that you can position and locate text, let’s move on to displaying
variable data.

Displaying Variables or Numbers
To display the contents of variables on the LCD screen, use this line:

 lcd.print(variable);

If you are displaying a float variable, you can specify the number of dec-
imal places to use. For example, lcd.print(pi, 3) in the following example
tells the Arduino to display the value of pi to three decimal places, as shown
in Figure 7-4:

 float pi = 3.141592654;
 lcd.print("pi: ");
 lcd.print(pi, 3);

Figure 7-4: LCD displaying a floating-point number

When you want to display an integer on the LCD screen, you can display
it in hexadecimal or binary, as shown in Listing 7-2.

// Listing 7-2
 int zz = 170;
 lcd.setCursor(0, 0);
 lcd.print("Binary: ");
 lcd.print(zz, BIN); // display 170 in binary
 lcd.setCursor(0, 1);
 lcd.print("Hexadecimal: ");
 lcd.print(zz, HX); // display 170 in hexadecimal

Listing 7-2: Functions for displaying binary and hexadecimal numbers

The LCD will then display the text shown in Figure 7-5.

Figure 7-5: Results of the code in Listing 7-2

152 Chapter 7

Project #25: Defining Custom Characters

In addition to using the standard letters, numbers, and symbols available
on your keyboard, you can define up to eight of your own characters in
each sketch. Notice in the LCD module that each character is made up of
eight rows of five dots, or pixels. Figure 7-6 shows a close-up.

Figure 7-6: Each character is made up of eight
rows of five pixels.

To display your own characters, you must first define each one using an
array. For example, to create a smiley face, you could use the following:

byte a[8] = { B00000,
 B01010,
 B01010,
 B00000,
 B00100,
 B10001,
 B01110,
 B00000 };

Each number in the array addresses an individual pixel in the display.
A 0 turns off a pixel, and a 1 turns it on. The elements in the array repre-
sent the rows of pixels in the display; the top element is the top row, the
next element is the second row down, and so on.

N O T E When you’re planning your custom characters, it can be helpful to plan the character
using some graph paper. Each square that is filled in represents a 1, and each empty
square represents a 0 in the array.

In this example, since the first element is B00000, all the pixels in the top
row are turned off because we see only 0s. In the next element, B01010, every
other pixel is turned on, and the 1s form the top of the eyes. Each row and
pixel continues to fill out the characters.

Next, assign the array (which defines your new character) to the first of
the eight custom character slots in void setup() with the following function:

 lcd.createChar(0, a); // assign the array a[8] to custom character slot 0

Liquid Crystal Displays 153

Finally, to display the character, add the following in void loop():

 lcd.write(0);

To display our custom character, we’d use the following code:

// Project 25 - Defining Custom Characters
#include <LiquidCrystal.h>
LiquidCrystal lcd(4, 5, 6, 7, 8, 9); // pins for RS, E, DB4, DB5, DB6, DB7
byte a[8] = { B00000,
 B01010,
 B01010,
 B00000,
 B00100,
 B10001,
 B01110,
 B00000 };
void setup()
{
 lcd.begin(16, 2);
 lcd.createChar(0, a);
}
void loop()
{
 lcd.write(0); // write the custom character 0 to the next cursor position
}

Figure 7-7 shows the smiley faces displayed on the LCD screen.

Figure 7-7: The result of Project 25

Character LCD modules are simple to use and somewhat versatile. For
example, using what you’ve learned, you could create a detailed digital ther-
mometer by combining this LCD and the temperature-measurement part of
Project 20. However, if you need to display a lot of data or graphical items,
you will need to use a graphic LCD module.

Graphic LCD Modules
Graphic LCD modules are larger and more expensive than character
modules, but they’re also more versatile. You can use them not only to
display text but also to draw lines, dots, circles, and more to create visual

154 Chapter 7

effects. The graphic LCD used in this book
is a 128-by-64-pixel module with a KS0108B-
compatible interface, as shown in Figure 7-8.

As with the character LCD, the graphic
LCD’s trimpot has a value of 10 k: and
is used to adjust the display contrast. The
header pins are soldered to the row of holes
along the bottom of the LCD to make inser-
tion into a breadboard more convenient, with
the holes numbered 1 through 20. The pin
closest to the corner of the module is pin 1.

Connecting the Graphic LCD
Before you can use the graphic LCD, you’ll need to connect 20 wires
between the LCD and the Arduino. Make the connections as shown in
Table 7-1.

Table 7-1: Graphic LCD-to-Arduino Connections

LCD Pin Number To Arduino Pin LCD Pin Function

1 5 V VDD
2 GND VSS (GND)
3 Center of 10 kȍ trimpot VO (Contrast)
4 D8 DB0
5 D9 DB1
6 D10 DB2
7 D11 DB3
8 D4 DB4
9 D5 DB5
10 D6 DB6
11 D7 DB7
12 A0 CS2
13 A1 CS1
14 RST /RESET
15 A2 R/W
16 A3 D/I
17 A4 E
18 Outer leg of trimpot, other

trimpot leg to 5 V
VEE (trimpot voltage)

19 5 V through a 22 ȍ resistor LED backlight anode (+)
20 GND LED backlight cathode (−)

Figure 7-8: A graphic LCD
module

Liquid Crystal Displays 155

Using the LCD
After the LCD is wired up, you can download and install the Arduino
library for the graphic LCD module. Download the latest version of
the library from http://code.google.com/p/glcd-arduino/downloads/list/ and
install it in the same manner described in “Expanding Sketches with
Libraries” on page 169.

Now, to use the LCD, insert the following before the void setup():

#include <glcd.h> // include the graphics LCD library
#include "fonts/SystemFont5x7.h" // include the standard character fonts for it

Then, after void setup(), add the following lines to prepare the display:

 GLCD.Init(NON_INVERTED); // use INVERTED to invert pixels being on or off
 GLCD.SelectFont(System5x7); // choose a font for use on the display
 GLCD.ClearScreen(); // clear the LCD screen

Controlling the Display
The graphic LCD’s display will show up to eight rows of 20 characters of
text. To position the text cursor, enter the following, replacing the x and y
with actual coordinates:

 GLCD.CursorTo(x, y);

To display particular text, replace text in the following example with
the text you want to display:

 GLCD.Puts("text");

To display an integer, use the following code, replacing number with the
number you want to display:

 GLCD.PrintNumber(number);

Project #26: Seeing the Text Functions in Action

The text functions are demonstrated in this sketch:

// Project 26 - Seeing the Text Functions in Action
#include <glcd.h> // include the graphics LCD library
#include "fonts/SystemFont5x7.h" // include the standard character fonts for it

156 Chapter 7

int j = 7;

void setup()
{
 GLCD.Init(NON_INVERTED);
 GLCD.ClearScreen();
 GLCD.SelectFont(System5x7);
}

void loop()
{
 GLCD.ClearScreen();
 GLCD.CursorTo(1, 1);
 GLCD.Puts("Hello, world.");
 GLCD.CursorTo(1, 2);
 GLCD.Puts("I hope you are ");
 GLCD.CursorTo(1, 3);
 GLCD.Puts("enjoying this");
 GLCD.CursorTo(1, 4);
 GLCD.Puts("book. ");
 GLCD.CursorTo(1, 5);
 GLCD.Puts("This is from ");
 GLCD.CursorTo(1, 6);
 GLCD.Puts("chapter ");
 GLCD.PrintNumber(j);
 GLCD.Puts(".");
 do {} while (1);
}

The sketch should display the output shown in Figure 7-9.

Figure 7-9: Output from Project 26

Creating More Complex Display Effects
Now let’s look at a few functions we can use to create various display effects.
Keep in mind that the graphic LCD screen has a resolution of 128 columns of
64 pixels, but when we refer to them in various functions, they are counted
from 0 to 127 across and 0 to 63 down.

Liquid Crystal Displays 157

This graphical function will turn on a single pixel at position x, y with
the color set to BLACK, or it will turn off a single pixel with the color set to
WHITE. The color parameter always sets black to on and white to off.

 GLCD.SetDot(x, y, color); // color is BLACK or WHITE

The next function draws a rectangle with the upper-left corner at x, y.
The width is w, and the depth or vertical size is h. The resulting rectangle
will have a black outline and a white background.

 GLCD.DrawRect(x, y, w, h, color);

This function draws a filled rectangle with the same parameters:

 GLCD.FillRect(x, y, w, h, color);

This function draws a rectangle with the same parameters but with
rounded corners of radius r.

 GLCD.DrawRoundRect(x, y, w, h, r, color);

This function draws a circle with the center at x, y and a radius of r pixels:

 GLCD.DrawCircle(x, y, r, color);

This draws a vertical line starting from point x, y with a length of
l pixel.

 GLCD.DrawVertLine(x, y, l, color);

And this draws a horizontal line starting from point x, y with a length
of l pixel.

 GLCD.DrawHoriLine(x, y, l, color);

With the functions discussed so far and some imagination, you can
create a variety of display effects or display data graphically. In the next sec-
tion, we’ll build on our quick-read thermometer example using the LCD
screen and some of these functions.

Project #27: Creating a Temperature History Monitor

In this project, our goal is to measure the temperature once every 20 min-
utes and display the last 100 readings in a line graph. Each reading will be
represented as a pixel, with the temperature on the vertical axis and time

158 Chapter 7

on the horizontal. The most current reading will appear on the left, and
the display will continually scroll the readings from left to right. The cur-
rent temperature will also be displayed as a numeral.

The Algorithm
Although it may sound complex, this project is fairly easy and actually
requires only two functions. The first function takes a temperature reading
from the TMP36 temperature sensor and stores it in an array of 100 values.
Each time a new reading is taken, the previous 99 readings are moved down
the array to make way for the new reading, and the oldest reading is erased.
The second function draws on the LCD screen. It displays the current tem-
perature, a scale for the graph, and the positions of each pixel for the dis-
play of the temperature data over time.

The Hardware
Here’s what you’ll need to create this project:

x� One 128-by-64-pixel KS0108B graphic LCD module with pins for bread-
board use

x� One 10 k: trimpot
x� One TMP36 temperature sensor
x� Various connecting wires
x� One breadboard
x� Arduino and USB cable

Connect the graphic LCD as described in Table 7-1, and connect the
TMP36 sensor to 5 V, analog 5, and GND.

The Sketch
Enter and upload the following sketch, which also includes relevant com-
ments about the functions used.

// Project 27 - Creating a Temperature History Monitor

#include <glcd.h> // include the graphics LCD library
#include <fonts/SystemFont5x7.h> // include the standard character fonts for it

int tcurrent;
int tempArray[100];

void setup()
{
 GLCD.Init(NON_INVERTED); // configure GLCD
 GLCD.ClearScreen(); // turn off all GLCD pixels
 GLCD.SelectFont(System5x7);
}

Liquid Crystal Displays 159

void getTemp() // function to read temperature from TMP36
{
 float sum = 0;
 float voltage = 0;
 float sensor = 0;
 float celsius;

 // read the temperature sensor and convert the result to degrees C
 sensor = analogRead(5);
 voltage = (sensor * 5000) / 1024;
 voltage = voltage - 500;
 celsius = voltage / 10;
 tcurrent = int(celsius);

 // insert the new temperature at the start of the array of past temperatures
 for (int a = 99 ; a >= 0 ; --a)
 {
 tempArray[a] = tempArray[a-1];
 }
 tempArray[0] = tcurrent;
}

void drawScreen() // generate GLCD display effects
{
 int q;
 GLCD.ClearScreen();
 GLCD.CursorTo(5, 0);
 GLCD.Puts("Current:");
 GLCD.PrintNumber(tcurrent);
 GLCD.CursorTo(0, 1);
 GLCD.PrintNumber(40);
 GLCD.CursorTo(0, 2);
 GLCD.PrintNumber(32);
 GLCD.CursorTo(0, 3);
 GLCD.PrintNumber(24);
 GLCD.CursorTo(0, 4);
 GLCD.PrintNumber(16);
 GLCD.CursorTo(1, 5);
 GLCD.PrintNumber(8);
 GLCD.CursorTo(1, 6);
 GLCD.PrintNumber(0);
 for (int a = 28 ; a < 127 ; a++)
 {
 q = (55 - tempArray[a-28]);
 GLCD.SetDot(a, q, BLACK);
 }
}

void loop()
{
 getTemp();
 drawScreen();
 for (int a = 0 ; a < 20 ; a++) // wait 20 minutes until the next reading

160 Chapter 7

 {
 delay(60000); // wait 1 minute
 }
}

The Result
The resulting display should look something like Figure 7-10.

Figure 7-10: Results of Project 27

Modifying the Sketch
Some people can better interpret data in a visual way instead of just reading
numbers. This type of project could also be used to display other kinds of
data, such as the voltage from various sensors as measured by analog input
pins. Or you could add another temperature sensor and show both values
at once. Almost anything that returns a value can be displayed using the
graphic LCD module.

Looking Ahead
Now that you have experience with LCDs, you can see that the Arduino
is in fact a small computer: It can accept and process incoming data and
display it to the outside world. But this is only the beginning. In the next
chapter you’ll work on making your own Arduino protoshields, record data
to microSD memory cards, and learn about libraries and Arduino timing
functions.

8
E X P A N D I N G Y O U R A R D U I N O

In this chapter you will

x� Learn about the broad variety of Arduino shields
x� Make your own Arduino shield using a ProtoShield
x� Understand how Arduino libraries can expand the available functions
x� Use a microSD card shield to record data that can be analyzed in a

spreadsheet
x� Build a temperature-logging device
x� Learn how to make a stopwatch using micros() and millis()
x� Understand Arduino interrupts and their uses

We’ll continue to discover ways to expand our Arduino (using various
shields), and you’ll follow an example to learn how to make your own shield.
Over time, as you experiment with electronics and Arduino, you can make
your circuits more permanent by building them onto a ProtoShield, a blank
printed circuit board that you can use to mount custom circuitry.

162 Chapter 8

One of the more useful shields is the microSD card shield. We’ll use it in
this chapter to create a temperature-logging device to record temperatures
over time; the shield will be used to record data from the Arduino to be
transferred elsewhere for analysis.

You’ll learn about the functions micros() and millis(), which are very
useful for keeping time, as you’ll see in the stopwatch project. Finally, we’ll
examine interrupts.

Shields
You can add functionality to your Arduino board by attaching shields. A
shield is a circuit board that connects via pins to the sockets on the sides of
an Arduino. Hundreds of shields are available on the market. One popular
project, for example, combines a GPS shield with a microSD memory card
shield to create a device that logs and stores position over time, such as
a car’s path of travel or the location of a new hiking trail. Other projects
include Ethernet network adapters that let the Arduino access the Internet
(Figure 8-1).

Figure 8-1: Ethernet shield on Arduino Uno

GPS satellite receivers let you track the location of the Arduino
(Figure 8-2). MicroSD memory card interfaces let the Arduino store data
on a memory card (Figure 8-3).

Arduino shields are designed to be stacked, and they usually work in
combination with other shields. For example, Figure 8-4 shows a stack that
includes an Arduino Uno, a microSD memory card shield to which data can
be recorded, an Ethernet shield for connecting to the Internet, and an LCD
shield to display information.

Expanding Your Arduino 163

Figure 8-2: GPS receiver shield (with separate GPS module) on Arduino Uno

Figure 8-3: MicroSD card shield kit

Figure 8-4: Three stacked shields with an Arduino Uno

164 Chapter 8

W A R N I N G When stacking shields, make sure that no shield uses the same digital or analog pins
used by another shield at the same time. If you share pins between shields that use the
same pin(s) for different functions, you may damage your entire creation, so take care.
The supplier of each shield should provide information showing which pins are used
by their shields. You can find a great, community-supported list of shields and shield
pins used at http://www.shieldlist.org/.

ProtoShields
You can buy a variety of shields online (at http://www.shieldlist.org/, for
example) or make your own using a ProtoShield. ProtoShields come pre-
assembled or in kit form, similar to the one shown in Figure 8-5.

A ProtoShield also makes a good base for a solderless breadboard,
because it keeps a small circuit within the physical boundary of your Arduino
creation (as with the quick-read thermometer shown in Figure 8-6). Smaller
solderless breadboards fit within the rows of sockets can be attached to the
circuit board with Blu-Tack reusable putty for temporary mounting or double-
sided tape for more permanent use. ProtoShields can also act as a more per-
manent foundation for circuits that have been tested on a breadboard.

Building custom circuits on a ProtoShield requires strategic and spe-
cial planning. This includes designing the circuit, making a schematic,
and then planning the layout of the components as they will sit in the
ProtoShield. Finally, the completed circuit for your custom shield will be
soldered into place, but you should always test it first using a solderless
breadboard to ensure that it works. Some ProtoShields come with a PDF
schematic file that you can download and print, intended specifically for
drawing your project schematic.

Figure 8-5: ProtoShield kit Figure 8-6: The quick-read thermometer from
Project 8

Expanding Your Arduino 165

Project #28: Creating a Custom Shield with Eight LEDs

In this project, you’ll create a custom shield containing eight LEDs
and current-limiting resistors. This custom shield will make it easy to
experiment with LEDs on digital outputs.

The Hardware
The following hardware is required for this project:

x� One blank Arduino ProtoShield
x� Eight LEDs of any color
x� Eight 560 : resistors (R1 to R8)
x� Two 6-pin Arduino stackable headers
x� Two 8-pin Arduino stackable headers

The Schematic
The circuit schematic is shown in Figure 8-7.

N/C

IO REF

SCL

SDA

RST

AREF

A0

A1

A2

A3

A4

A5

3V3 5V Vin

Analog Input

D11

D10

D9

D8

D7

D6

D5

D4

D3 PWM

TX

RX

PWM

PWM

PWM

PWM

PWM

D2

D1

D13

D12

D0

Di
gi

ta
l I

np
ut

/O
ut

pu
t

Power

Arduino

GND

R1

R7

R8

R5

R6

R4

R3

R2

LED1 LED8LED7LED6LED4LED3LED2 LED5

Figure 8-7: Schematic for Project 28

166 Chapter 8

The Layout of the ProtoShield Board
The next step is to learn the layout of the holes on the ProtoShield. The
rows and columns of holes on the ProtoShield should match those of the
Arduino’s solderless board. On the blank ProtoShield shown in Figure 8-8,
the designers have surrounded holes that are electrically connected with
black lines.

Figure 8-8: Blank ProtoShield shown from above

The long horizontal line below the digital pins is connected to the
5V socket, and the horizontal line above the analog and other pins is
connected to GND. The holes between the two lines are insulated from
each other. Finally, there are two rows of pins: one at the very top of the
ProtoShield and one at the very bottom. The top row consists of two groups
of eight pins, and the bottom has two groups of six pins. This is where we
solder the stackable headers that allow the ProtoShield to slot into the
Arduino board.

The Design
Lay out your circuit using graph paper, as shown in Figure 8-9.

Expanding Your Arduino 167

Figure 8-9: Planning our custom shield

After you’ve drawn a plan for your circuit, test-fit the actual compo-
nents into the ProtoShield to make sure that they’ll fit and that they aren’t
too crowded. If the ProtoShield has space for a reset button, always include
one, because the shield will block access to your Arduino’s RESET button.

Soldering the Components
Once you’re satisfied with the layout of the circuit on your ProtoShield and
you have tested the circuit to make sure that it works, you can solder the
components. Using a soldering iron is not that difficult, and you don’t need
to buy an expensive soldering station for this type of work. A simple iron
rated at 25–40 watts, like the one shown in Figure 8-10, should do it.

Figure 8-10: Soldering iron

N O T E If soldering is new to you, download and read the instructional comic book from
http://mightyohm.com/soldercomic/.

168 Chapter 8

When soldering the components, you may need to bridge them together
with a small amount of solder, as shown in Figure 8-11. As you can see, the
end of one resistor is connected to the anode of an LED.

Check each solder connection as you go, because mistakes are easier
to locate and repair before the project is finished. When the time comes to
solder the four header sockets, keep them aligned using an existing shield
to hold the new sockets, as shown in Figure 8-12.

Figure 8-13 shows the finished product: a custom Arduino shield with
eight LEDs.

Figure 8-13: Completed custom shield!

Figure 8-12: Soldering header socketsFigure 8-11: Solder bridge

Expanding Your Arduino 169

Modifying the Custom Shield
We could use this simple shield in a more complicated project—for example,
to monitor the status of digital pins 0 to 7. If we added another six resistors
and LEDs, then we could monitor the entire digital output range. There
are lots of different ways to use this shield. Just use your imagination!

Expanding Sketches with Libraries
Just as an Arduino shield can expand our hardware, a library can add use-
ful functions for particular tasks that we can add to our sketches or add
extra functions that allow the use of various hardware specific to a manu-
facturer. Anyone can create a library, just as suppliers of various Arduino
shields often write their own libraries to match their hardware.

The Arduino IDE already includes a set of preinstalled libraries. To
include them in your sketches, choose Sketch�Import Library, and you
should see the collection of preinstalled libraries with names such as
Ethernet, LiquidCrystal, Servo, and so on. Many of these names will be
self-explanatory. (If a library is required in your project work, it will be
explained in detail.)

Importing a Shield’s Libraries
If you buy a shield, you’ll generally need to download and install its libraries
from the shield vendor’s site or from a link provided.

To demonstrate how this is done, let’s download the library required by
the microSD card shield shown in Figure 8-3.

1. Download the latest file from http://code.google.com/p/sdfatlib/downloads/
list/. Figure 8-14 shows this web page.

Figure 8-14: Library versions page

2. Click the latest version of the library in the list of filenames at the left,
which should launch the download page (Figure 8-15).

170 Chapter 8

Figure 8-15: Library download page

3. Click the filename ending with .zip, and the file should start to down-
load. Once you’ve downloaded the library, use the directions that follow
to install it on your operating system.

Installing the Library on Mac OS X

If you’re downloading to the Mac OS X system, follow these directions:

1. Open the Downloads folder on your Mac and find the downloaded .zip
file, as shown in Figure 8-16.

Figure 8-16: Library file in the Downloads folder

2. Double-click the downloaded file’s folder to reveal its contents, and
then locate the SdFat folder, as shown in Figure 8-17.

Figure 8-17: Downloaded library folder

Expanding Your Arduino 171

3. Copy the SdFat folder from the window shown in Figure 8-17 to your
Arduino/libraries folder, as shown in Figure 8-18.

Figure 8-18: Completed library installation

4. Make sure that the SdFat library has been installed and is available by
restarting the IDE software and selecting Sketch�Import Library. SdFat
should show up in the list. (If it does not, try the installation procedure
again.)

With your library installed, skip forward to “MicroSD Memory Cards”
on page 173.

Installing the Library on Windows XP and Later

If you’re downloading to a Windows XP or later system, follow these directions:

1. After the download has completed, open the downloaded file folder
to reveal its contents, and then locate the SdFat folder, as shown in
Figure 8-19.

Figure 8-19: Downloaded library folder

2. Copy the SdFat folder from the window shown in Figure 8-19 to your
Arduino/libraries folder, as shown in Figure 8-20.

172 Chapter 8

Figure 8-20: Completed library installation

3. Make sure that the SdFat library has been installed and is available by
restarting the IDE and selecting Sketch�Import Library. SdFat should
appear in the list. (If it does not, try the installation procedure again
from the beginning.)

With your library installed, skip forward to “MicroSD Memory Cards”
on page 173.

Installing the Library on Ubuntu Linux 11.04 and Later

If you’re downloading to a system running Ubuntu Linux 11.04 or later,
follow these directions:

1. Locate the downloaded file and double-click it. The Archive Manager
window should appear with the SdFat folder, as shown in Figure 8-21.

Figure 8-21: Downloaded library folder

Expanding Your Arduino 173

2. Right-click the SdFat folder in the window shown in Figure 8-21, and
then click Extract to extract it to your /libraries folder (Figure 8-22).

Figure 8-22: Destination for library folder

3. Make sure that the SdFat library has been installed and is available by
restarting the IDE and selecting Sketch�Import Library. SdFat should
appear in the list. (If it does not, try the installation procedure again
from the beginning.)

With your library installed, move on to the next section.

MicroSD Memory Cards
By using microSD cards with your Arduino, you can capture data from
many sources, such as the TMP36 temperature sensor we used in Chapter 4.
You can also use the microSD card to store web server data or any files for
your project to use. To record and store the data you collect, you can use a
microSD memory card shield like the one shown in Figure 8-23. This shield
uses microSD (not microSDHC) cards with a capacity of up to 2GB.

Figure 8-23: A microSD card with a 2GB capacity

174 Chapter 8

Several memory card shields are available from popular retailers such
as SparkFun, Adafruit Industries, and Snootlab. The shield used in this
book (shown in Figure 8-3) is from SparkFun (part numbers DEV-09802
and PRT-10007).

N O T E Before you can use a memory card with a shield, you need to format it. To do so,
plug it into a computer and follow your operating system’s instructions for format-
ting memory cards. Make sure you use the FAT16 format type. Also, depending on
which shield you buy, the sockets may need to be soldered in, following the procedure
discussed in “Soldering the Components” on page 167.

Testing Your MicroSD Card
After you have finished formatting and assembling the microSD card
shield, make sure that it’s working correctly. To do so, follow these steps:

1. Connect the shield to your Arduino, and then insert the memory card
and plug in the USB cable.

2. Run the IDE by selecting File�Examples�SdFat�SdInfo. Then
upload the SdInfo sketch that appeared in the IDE.

3. Open the Serial Monitor window, set it to 9,600 baud, press any key on
the keyboard, and then press ENTER. After a moment, you should see
some data about the microSD card, as shown in Figure 8-24.

Figure 8-24: Successful microSD card test results

Expanding Your Arduino 175

If the test results don’t appear in the Serial Monitor, then try the follow-
ing until the problem is fixed:

x� Remove the USB cable from your Arduino, and remove and reinsert the
microSD card.

x� Make sure that the header sockets are soldered neatly and that the pins
are not shorted out.

x� Check that the Serial Monitor baud rate is 9,600 and that a regular
Arduino Uno–compatible board is being used. The Mega and some
other board models have the SPI pins in different locations.

x� Reformat your microSD card.

Project #29: Writing Data to the Memory Card

To write data to the memory card, connect your shield, insert a microSD
card, and then enter and upload the following sketch:

// Project 29 - Writing Data to the Memory Card

int b = 0;

#include <SD.h>
void setup()
{
 Serial.begin(9600);
 Serial.print("Initializing SD card...");
 pinMode(10, OUTPUT);

 // check that the microSD card exists and is usable
 if (!SD.begin(8))
 {
 Serial.println("Card failed, or not present");
 // stop sketch
 return;
 }
 Serial.println("microSD card is ready");
}

void loop()
{

X // create the file for writing
 File dataFile = SD.open("DATA.TXT", FILE_WRITE);
 // if the file is ready, write to it:
 if (dataFile)

Y {
 for (int a = 0 ; a < 11 ; a++)
 {
 dataFile.print(a);
 dataFile.print(" multiplied by two is ");
 b = a * 2;

176 Chapter 8

Z dataFile.println(b, DEC);
[}
\ dataFile.close(); // close the file once the system has finished with it

 // (mandatory)
 }
 // if the file isn't ready, show an error:
 else
 {
 Serial.println("error opening DATA.TXT");

] }
 Serial.println("finished");
 do {} while (1);
}

The sketch creates a text file called DATA.txt on the microSD card, as
shown in Figure 8-25.

Figure 8-25: Output from Project 29

Let’s review the void loop() section of the sketch to see how it created
the text file. The code in void loop() between X and Y and between [
and] creates and opens the file for writing. To write text to the file, we
use this:

 dataFile.print(); or dataFile.println();

This code works in the same manner as, for example, Serial.println(),
so you can write it in the same manner as you would to the Serial Monitor.
At X, we can set the name of the created text file, which must be eight char-
acters, followed by a dot, and then three characters, such as DATA.txt.

At Z, we use DEC as the second parameter. This states that the variable is
a decimal number and should be written to the text file as such. If we were
writing a float variable instead, then we would use a digit for the number of
decimal places to write (to a maximum of six).

When finished writing data to the file, at \, we use dataFile.close() to
close the file for writing. If this step is not followed, the computer will not
be able to read the created text file.

Expanding Your Arduino 177

Project #30: Creating a Temperature-Logging Device

Now that you know how to record data, let’s measure the temperature every
minute for 8 hours using our microSD card shield and the TMP36 tempera-
ture sensor that we introduced in Chapter 4. We’ll combine the functions
for writing to the microSD card from Project 29 with temperature measure-
ment from Project 27.

The Hardware
The following hardware is required:

x� One TMP36 temperature sensor
x� One breadboard
x� Various connecting wires
x� MicroSD card shield and card
x� Arduino and USB cable

Insert the microSD card into the shield, and then insert the shield into
the Arduino. Connect the left (5V) pin of the TMP36 to Arduino 5V, the
middle pin to analog, and the right pin to GND.

The Sketch
Enter and upload the following sketch:

// Project 30 - Creating a Temperature-Logging Device

#include <SD.h>
float sensor, voltage, celsius;

void setup()
{
 Serial.begin(9600);
 Serial.print("Initializing SD card...");
 pinMode(10, OUTPUT);

 // check that the microSD card exists and can be used
 if (!SD.begin(8))
 {
 Serial.println("Card failed, or not present");
 // stop sketch
 return;
 }
 Serial.println("microSD card is ready");
}

178 Chapter 8

void loop()
{
 // create the file for writing
 File dataFile = SD.open("DATA.TXT", FILE_WRITE);
 // if the file is ready, write to it:
 if (dataFile)
 {
 for (int a = 0 ; a < 481 ; a++) // 480 minutes in 8 hours
 {
 sensor = analogRead(0);
 voltage = (sensor * 5000) / 1024; // convert raw sensor value to
 // millivolts
 voltage = voltage - 500;
 celsius = voltage / 10;
 dataFile.print(" Log: ");
 dataFile.print(a, DEC);
 dataFile.print(" Temperature: ");
 dataFile.print(celsius, 2);
 dataFile.println(" degrees C");
 delay(599900); // wait just under one minute
 }
 dataFile.close(); // mandatory
 Serial.println("Finished!");
 do {} while (1);
 }
}

The sketch will take a little more than 8 hours to complete, but you can
alter this time period by lowering the value in delay(599900).

After the sketch has finished, remove the microSD card and open the
log file in a text editor, as shown in Figure 8-26.

Figure 8-26: Results from Project 30

For more serious analysis of the captured data, delimit the lines of text
written to the log file with spaces or colons so that the file can be easily
imported into a spreadsheet. For example, you could import the file into

Expanding Your Arduino 179

OpenOffice Calc by choosing Insert�Sheet From File to produce a spread-
sheet like the one shown in Figure 8-27, which you could then analyze the
data of, as shown in Figure 8-28.

Figure 8-27: Importing data into a spreadsheet

Figure 8-28: Temperature analysis

The temperature examples can be hacked to suit your own data analy-
sis projects. You can use these same concepts to record any form of data
that can be generated by an Arduino system.

Timing Applications with millis() and micros()
Each time the Arduino starts running a sketch, it also records the passage
of time using milliseconds and microseconds. A millisecond is one thou-
sandth of a second (0.001), and a microsecond is one millionth of a second
(0.000001). You can use these values to measure the passage of time when
running sketches.

180 Chapter 8

The following functions will access the time values stored in an
unsigned long variable:

 unsigned long a,b;
 a = micros();
 b = millis();

Due to the limitations of the unsigned long variable type, the value will
reset to 0 after reaching 4,294,967,295, allowing for around 50 days of
counting for millis() and 70 minutes in micros(). Furthermore, due to the
limitations of the Arduino’s microprocessor, micros() values are always in
multiples of four.

Let’s use these values to see how long it takes for the Arduino to turn
a digital pin from LOW to HIGH and vice versa. To do this, we’ll read micros()
before and after a digitalWrite() function, find the difference, and display
it on the Serial Monitor. The only required hardware is your Arduino and
cable.

Enter and upload the sketch shown in Listing 8-1.

// Listing 8-1

unsigned long start, finished, elapsed;

void setup()
{
 Serial.begin(9600);
 pinMode(3, OUTPUT);
 digitalWrite(3, LOW);
}

void loop()
{

X start = micros();
 digitalWrite(3, HIGH);

Y finished = micros();
Z elapsed = finished – start;

 Serial.print("LOW to HIGH: ");
 Serial.print(elapsed);
 Serial.println(" microseconds");
 delay(1000);

[start = micros();
 digitalWrite(3, LOW);
 finished = micros();
 elapsed = finished - start;
 Serial.print("HIGH to LOW: ");
 Serial.print(elapsed);
 Serial.println(" microseconds");
 delay(1000);
}

Listing 8-1: Timing digital pin state change with micros()

Expanding Your Arduino 181

The sketch takes readings of micros()
before and after the digitalWrite(HIGH) func-
tions at X and Y, and then it calculates the
difference and displays it on the Serial
Monitor at Z. This is repeated for the
opposite function at [.

Now open the Serial Monitor to view
the results, shown in Figure 8-29.

Because the resolution is 4 micro-
seconds, if the value is 8 microseconds,
then we know that the duration is greater
than 4 and less than or equal to 8.

Project #31: Creating a Stopwatch

Now that we can measure the elapsed time between two events, we can
create a simple stopwatch using an Arduino. Our stopwatch will use two
buttons: one to start or reset the count and another to stop counting and
show the elapsed time. The sketch will continually check the status of
the two buttons. When the start button is pressed, a millis() value will be
stored, and when the second button is pressed, a new millis() value will
be stored. The custom function displayResult() will convert the elapsed time
from milliseconds into hours, minutes, and seconds. Finally, the time will
be displayed on the Serial Monitor.

The Hardware
The following hardware is required for this project:

x� One breadboard
x� Two push buttons (S1 and S2)
x� Two 10 k: resistors (R1 and R2)
x� Various connecting wires
x� Arduino and USB cable

The Schematic
The circuit schematic is shown in Figure 8-30.

N O T E You will use this circuit for the next project, so don’t pull it apart when you’re finished!

Figure 8-29: Output from Listing 8-1

182 Chapter 8

N/C

IO REF

SCL

SDA

RST

AREF

A0

A1

A2

A3

A4

A5

3V3 5V Vin

Analog Input

D11

D10

D9

D8

D7

D6

D5

D4

D3 PWM

TX

RX

PWM

PWM

PWM

PWM

PWM

D2

D1

D13

D12

D0

Di
gi

ta
l I

np
ut

/O
ut

pu
t

Power

Arduino

GND

S1

S2

R1
10kΩ

R2
10kΩ

Figure 8-30: Schematic for Project 31

The Sketch
Enter and upload this sketch:

// Project 31 – Creating a Stopwatch

unsigned long start, finished, elapsed;

void setup()
{
 Serial.begin(9600);

X pinMode(2, INPUT); // the start button
 pinMode(3, INPUT); // the stop button
 Serial.println("Press 1 for Start/reset, 2 for elapsed time");
}

void displayResult()
{
 float h, m, s, ms;
 unsigned long over;

Y elapsed = finished - start;

 h = int(elapsed / 3600000);
 over = elapsed % 3600000;

Expanding Your Arduino 183

 m = int(over / 60000);
 over = over % 60000;
 s = int(over / 1000);
 ms = over % 1000;

 Serial.print("Raw elapsed time: ");
 Serial.println(elapsed);
 Serial.print("Elapsed time: ");
 Serial.print(h, 0);
 Serial.print("h ");
 Serial.print(m, 0);
 Serial.print("m ");
 Serial.print(s, 0);
 Serial.print("s ");
 Serial.print(ms, 0);
 Serial.println("ms");
 Serial.println();
}

void loop()
{

Z if (digitalRead(2) == HIGH)
 {
 start = millis();
 delay(200); // for debounce
 Serial.println("Started...");
 }

[if (digitalRead(3) == HIGH)
 {
 finished = millis();
 delay(200); // for debounce
 displayResult();
 }
}

The basis for our stopwatch
is simple. At X, we set up the
digital input pins for the start
and stop buttons. At Z, if the
start button is pressed, then
the Arduino notes the value for
millis() that we use to calculate
the elapsed time once the stop
button is pressed at [. After
the stop button is pressed, the
elapsed time is calculated in
the function displayResult()
at Y and shown in the Serial
Monitor window.

The results shown in
Figure 8-31 should appear
in the Serial Monitor.

Figure 8-31: Output from Project 31

184 Chapter 8

Interrupts
An interrupt in the Arduino world is basically a signal that allows a function
to be called at any time within a sketch—for example, when a digital input
pin’s state changes or a timer event is triggered. Interrupts are perfect for
calling a function to interrupt the normal operation of a sketch, such as
when a button is pressed.

When an interrupt is triggered, the normal operation and running of
your program in the void loop() is halted temporarily, the interrupt function
is called and executed, and then when the interrupt function exits, whatever
was happening in the main loop starts exactly from where it left off.

Keep in mind that interrupt functions should be short and usually
simple. They should exit quickly, and if the interrupt function does some-
thing that the main loop may already be doing, then the interrupt func-
tion is temporarily going to override whatever the main loop was doing.
For example, if the main loop is regularly sending Hello out the serial port
and the interrupt function sends --- when it is triggered, then you will see
any of these come out the serial port: H----ello, He----llo, Hel----lo, Hell----o, or
Hello----.

The Arduino Uno offers two interrupts that are available using digi-
tal pins 2 and 3. When properly configured, the Arduino will monitor
the voltage applied to the pins. When the voltage changes in a certain,
defined way (when a button is pressed, for example), an interrupt is trig-
gered, causing a corresponding function to run—maybe something like
“Stop Pressing Me!”

Interrupt Modes
One of four changes (or modes) can trigger an interrupt:

x� LOW: No current is applied to the interrupt pin.
x� CHANGE: The current changes, either between on and off or between off

and on.
x� RISING: The current changes from off to on at 5 V.
x� FALLING: The current changes from on at 5 V to off.

For example, to detect when a button attached to an interrupt pin has
been pressed, we could use the RISING mode. Or, for example, if you had an
electric trip wire running around your garden (connected between 5 V and
the interrupt pin), then you could use the FALLING mode to detect when the
wire has been tripped and broken.

N O T E The delay() and Serial.available() functions will not work within a function that
has been called by an interrupt.

Expanding Your Arduino 185

Configuring Interrupts
To configure interrupts, use the following in void setup():

 attachInterrupt(0, function, mode);
 attachInterrupt(1, function, mode);

Here, 0 is for digital pin 2, 1 is for digital pin 3, function is the name of
the function to call when the interrupt is triggered, and mode is one of the
four modes that triggers the interrupt.

Activating or Deactivating Interrupts
Sometimes within a sketch you won’t want to use the interrupts. Deactivate
them using the following:

noInterrupts(); // deactivate interrupts

And then reactivate them with this:

interrupts(); // reactivate interrupts

Interrupts work quickly and they are very sensitive, which makes them
useful for time-critical applications or for “emergency stop” buttons on
projects.

Project #32: Using Interrupts

We’ll use the circuit from Project 31 to demonstrate the use of interrupts.
Our example will blink the built-in LED every 500 milliseconds, during
which time both interrupt pins will be monitored. When the button on
interrupt 0 is pressed, the value for micros() will be displayed on the Serial
Monitor, and when the button on interrupt 1 is pressed, the value for millis()
will be displayed.

The Sketch
Enter and upload the following sketch:

// Project 32 – Using Interrupts

#define LED 13
void setup()
{
 Serial.begin(9600);
 pinMode(13, OUTPUT);
 attachInterrupt(0, displayMicros, RISING);
 attachInterrupt(1, displayMillis, RISING);
}

186 Chapter 8

X void displayMicros()
{
 Serial.write("micros() = ");
 Serial.println(micros());
}

Y void displayMillis()
{
 Serial.write("millis() = ");
 Serial.println(millis());
}

Z void loop()
{
 digitalWrite(LED, HIGH);
 delay(500);
 digitalWrite(LED, LOW);
 delay(500);
}

This sketch will blink
the onboard LED as shown in
void loop() at Z. When inter-
rupt 0 is triggered, the function
displayMicros() at X will be called;
or when interrupt 1 is triggered,
the function displayMillis() at Y
will be called. After either func-
tion has finished, the sketch
resumes running the code in
void loop.

Open the Serial Monitor win-
dow and press the two buttons to
view the values for millis() and
micros() as shown in Figure 8-32.

Looking Ahead
This chapter has given you more tools and options that you can adapt to
create and improve your own projects. In future chapters, we will work
with more Arduino shields and use the microSD card shield in other data-
logging applications.

Figure 8-32: Output from Project 32

9
N U M E R I C K E Y P A D S

In this chapter you will

x� Learn how to connect numeric keypads to your Arduino
x� Read values from the keypad in a sketch
x� Expand on decision systems with the switch-case function
x� Create a PIN-controlled lock or switch

Using a Numeric Keypad
As your projects become more involved, you might want to accept numeric
input from users when your Arduino isn’t connected to a PC—for example,
if you’d like to have the ability to turn something on or off by entering a
secret number. One option would be to wire up 10 or more push buttons
to various digital input pins (for the numbers 0 through 9); but it’s much
easier to use a numeric keypad like the one shown in Figure 9-1.

188 Chapter 9

Figure 9-1: Numeric keypad

One of the benefits of using a keypad is that it uses only 7 pins for 12
active buttons, and with the use of a clever Arduino library, you won’t need
to add pull-down resistors for debouncing as we did in Chapter 4. You
can download and then install the Keypad library from http://arduino.cc/
playground/uploads/Code/Keypad.zip.

Wiring a Keypad
Physically wiring the keypad to the Arduino is easy. On the back of the key-
pad are seven pins, as shown in Figure 9-2.

Figure 9-2: Keypad pins

The pins are numbered 1 to 7, from left to right. For all of the keypad
projects in this book, you’ll make the connections shown in Table 9-1.

Table 9-1: Keypad-to-Arduino Connections

Keypad Pin Number Arduino Pin

1 Digital 5
2 Digital 4
3 Digital 3
4 Digital 2
5 Digital 8
6 Digital 7

7 Digital 6

Numeric Keypads 189

Programming for the Keypad
When you write a sketch for the keypad, you must include certain lines of
code to enable the keypad, as identified in the following example sketch.
The required code starts at X and ends at \.

Before moving forward, test the keypad by entering and uploading
Listing 9-1:

// Listing 9-1

X // Beginning of necessary code

#include "Keypad.h"
const byte ROWS = 4; // set display to four rows
const byte COLS = 3; // set display to three columns
char keys[ROWS][COLS] =
 {{'1','2','3'},
 {'4','5','6'},
 {'7','8','9'},

Y {'*','0','#'}};
Z byte rowPins[ROWS] = {5, 4, 3, 2};
[byte colPins[COLS] = {8, 7, 6};

Keypad keypad = Keypad(makeKeymap(keys), rowPins, colPins, ROWS, COLS);

\ // End of necessary code

void setup()
{
 Serial.begin(9600);
}

void loop()
{
 char key = keypad.getKey();
 if (key != NO_KEY)
 {
 Serial.print(key);
 }
}

Listing 9-1: Numeric keypad demonstration sketch

At Y, we introduce the char variable type that contains one character, such
as a letter, number, or symbol, that can be generated with a computer key-
board. In this case, it contains the keypad’s numbers and symbols. The lines
of code at Z and [define which pins are used on the Arduino. Using these
lines and Table 9-1, you can change the digital pins used for input if you want.

Testing the Sketch
After uploading the sketch, open the Serial Monitor and press some keys on
the keypad. The characters for the keys you pressed will be displayed in the
Serial Monitor, as shown in Figure 9-3.

190 Chapter 9

Figure 9-3: Results of pressing keys on the keypad

Making Decisions with switch-case
When you need to compare two or more variables, you’ll often find it easier
to use a switch-case statement instead of an if-then statement, because switch-
case statements can make an indefinite number of comparisons and run
code when the comparison is found to be true. For example, if we had the
integer variable xx with a possible value of 1, 2, or 3 and we wanted to run
certain code based on whether a value was 1, 2, or 3, then we could use
code like the following to replace our if-then statement:

switch(xx)
{
 case 1:
 // do something as the value of xx is 1
 break; // finish and move on with sketch
 case 2:
 // do something as the value of xx is 2
 break;
 case 3:
 // do something as the value of xx is 3
 break;
 default:
 // do something if xx is not 1, 2 or 3
 // default is optional
}

The optional default: section at the end of this code segment lets you
choose to run some code when true comparisons no longer exist in the
switch-case statement.

Project #33: Creating a Keypad-Controlled Lock

In this project, we’ll create the beginning part of a keypad-controlled lock.
We’ll use the basic setup described in the sketch in Listing 9-1, but we’ll
also include a secret code that will need to be entered on the keypad. The
Serial Monitor will tell the user who types a code into the keypad whether
the code is correct or not.

Numeric Keypads 191

The sketch will call different functions, depending on whether the six-
digit secret code is correct. The secret code is stored in the sketch but is
not displayed to the user. To activate and deactivate the lock, the user must
press * and then the secret number, followed by #.

The Sketch
Enter and upload this sketch:

// Project 33 - Creating a Keypad-Controlled Lock

// Beginning of necessary code

#include "Keypad.h"
const byte ROWS = 4; // set display to four rows
const byte COLS = 3; // set display to three columns
char keys[ROWS][COLS] =
 {{'1','2','3'},
 {'4','5','6'},
 {'7','8','9'},
 {'*','0','#'}};
byte rowPins[ROWS] = {5, 4, 3, 2};
byte colPins[COLS] = {8, 7, 6};
Keypad keypad = Keypad(makeKeymap(keys), rowPins, colPins, ROWS, COLS);

// End of necessary code

X char PIN[6]={'1','2','3','4','5','6'}; // our secret number
char attempt[6]={0,0,0,0,0,0};
int z=0;

void setup()
{
 Serial.begin(9600);
}

void correctPIN() // do this if the correct PIN is entered
{
 Serial.println("Correct PIN entered...");
}

void incorrectPIN() // do this if an incorrect PIN is entered
{
 Serial.println("Incorrect PIN entered!");
}

void checkPIN()
{
 int correct=0;
 int i;

Y for (i = 0; i < 6 ; i++)
 {

192 Chapter 9

 if (attempt[q]==PIN[q])
 {
 correct++;
 }
 }
 if (correct==6)
 {

Z correctPIN();
 } else
 {

[incorrectPIN();
 }
 for (int zz=0; zz<6; zz++) // remove previously entered code attempt from
 {
 attempt[zz]=0;
 }
}

void readKeypad()
{
 char key = keypad.getKey();
 if (key != NO_KEY)
 {

\ switch(key)
 {
 case '*':
 z=0;
 break;
 case '#':
 delay(100); // removes the possibility of switch bounce
 checkPIN();
 break;
 default:
 attempt[z]=key;
 z++;
 }
 }
}

void loop()
{

] readKeypad();
}

How It Works
After the usual setup routines (as described in Listing 9-1), the sketch con-
tinually “listens” to the keypad by running the function readKeypad() at].
After a key is pressed, the value of the key is examined using a switch-case
statement at \. The values of the keys pressed on the keypad are stored in the
array attempt[], and when the user presses #, the function checkPin() is called.

Numeric Keypads 193

At Y, the values of keys pressed are compared against the PIN stored in
the array PIN[] at X, which holds the secret number. If the correct sequence
is entered, the function correctPin() at Z is called, where you can add your
own code to execute; but if the incorrect sequence is entered, the function
incorrectPin() is called at [. Finally, once the user’s entry has been checked,
it is removed from memory and the code is ready for the next test.

Testing the Sketch
After you’ve uploaded the sketch to the Arduino, open the Serial Monitor
window, press the asterisk key (*) on the numeric keypad, type the secret
number, and then press the pound sign key (#) when you’ve finished. Try
entering both correct and incorrect numbers. Your results should be similar
to the output shown in Figure 9-4.

Figure 9-4: Results from entering correct and incorrect PINs

This example served as a perfect foundation for your own PIN-activated
devices, such as locks, alarms, or anything else you can imagine. Just be
sure to replace the code in correctPIN() and incorrectPIN() with the required
code to run when a correct or incorrect sequence is entered.

Looking Ahead
Once again, you have learned another way to gather input for your Arduino.
You’ve also gained the foundational knowledge to create a useful method
of controlling a sketch using a numeric keypad, as well as the foundations
for a combination lock to access anything that your Arduino can control.
You’ve also learned the very useful switch-case function. Moving on to the
next chapter you’ll learn about another form of input: the touchscreen.

10
A C C E P T I N G U S E R I N P U T

W I T H T O U C H S C R E E N S

In this chapter you will

x� Learn how to connect a resistive touchscreen to your Arduino
x� Discover the values that can be returned from the touchscreen
x� Create a simple on/off touch switch
x� Create an on/off touch switch with a dimmer-style control

We see touchscreens everywhere today: smartphones, tablets, and por-
table video-game systems. So why not use a touchscreen to accept input
from a user?

Touchscreens
Touchscreens can be quite expensive, but we’ll use an inexpensive model
available from SparkFun (part numbers LCD-08977 and BOB-09170), origi-
nally designed for the Nintendo DS game console.

This touchscreen, which measures about 2 by 2 3/4 inches, is shown
mounted on a breadboard in Figure 10-1.

196 Chapter 10

Figure 10-1: Touchscreen mounted on a solderless
breadboard

Notice the horizontal ribbon cable connected into the small circuit
board at the upper-right corner (it’s circled in the figure). This breakout
board is used to attach the Arduino and the breadboard to the touchscreen;
Figure 10-2 shows a close-up of the board.

Figure 10-2: Touchscreen connector board

Connecting the Touchscreen
Connect the touchscreen breakout board to an Arduino as shown in
Table 10-1.

Table 10-1: Touchscreen breakout board connections

Breakout Board Pin Arduino Pin

Y1 A0
X2 A1
Y2 A2
X2 A3

Accepting User Input with Touchscreens 197

Project #34: Addressing Areas on the Touchscreen

The touchscreen has two layers of resistive coating between the top layer
of plastic film and the bottom layer of glass. One coating acts as the x-axis,
and the other is the y-axis. As current passes through each coating, the
resistance of the coating varies depending on where it has been touched,
so when each current is measured, the X and Y positions of the touched
area can be determined.

In this project, we’ll use the Arduino to record touched locations on
the screen and to convert the touches to integers that can be used to refer-
ence areas of the screen.

The Hardware
The following hardware is required:

x� Touchscreen and breakout board
x� One 10 k: trimpot
x� One 16×2-character LCD module
x� Various connecting wires
x� One breadboard
x� Arduino and USB cable

Connect the touchscreen as described in Table 10-1, and connect the
LCD module as described in Figure 7-2 on page 149.

The Sketch
Enter and upload the following sketch. I’ve highlighted important aspects
of the sketch with comments:

// Project 34 - Addressing Areas on the Touchscreen

#include <LiquidCrystal.h>
LiquidCrystal lcd(4,5,6,7,8,9);

int x,y = 0;

void setup()
{
 lcd.begin(16,2);
 lcd.clear();
}

X int readX() // returns the value of the touchscreen's x-axis
{
 int xr=0;
 pinMode(A0, INPUT);
 pinMode(A1, OUTPUT);
 pinMode(A2, INPUT);

198 Chapter 10

 pinMode(A3, OUTPUT);
 digitalWrite(A1, LOW); // set A1 to GND
 digitalWrite(A3, HIGH); // set A3 as 5V
 delay(5);
 xr=analogRead(0); // store the value of the x-axis
 return xr;
}

Y int readY() // returns the value of the touchscreen's y-axis
{
 int yr=0;
 pinMode(A0, OUTPUT); // A0
 pinMode(A1, INPUT); // A1
 pinMode(A2, OUTPUT); // A2
 pinMode(A3, INPUT); // A3
 digitalWrite(14, LOW); // set A0 to GND
 digitalWrite(16, HIGH); // set A2 as 5V
 delay(5);
 yr=analogRead(1); // store the value of the y-axis
 return yr;
}

void loop()
{
 lcd.setCursor(0,0);

Z lcd.print(" x = ");
 x=readX();
 lcd.print(x);
 y=readY();
 lcd.setCursor(0,1);

[lcd.print(" y = ");
 lcd.print(y);
 delay (200);
}

The functions readX() and readY() at X and Y read the currents from
the touchscreen’s resistive layers, measure the current using analogRead(),
and return the read value. The sketch rapidly runs these two functions to
provide a real-time position of the screen area being touched and displays
this on the LCD at Z and [. (The delay(5) in each function is required to
allow the input/output pins time to change their states.)

Testing the Sketch
To test the sketch, monitor the LCD module while you touch the screen,
and notice how the X and Y values change relative to the touched position
on the screen. Also notice the values displayed when the screen is not being
touched, such as those shown in Figure 10-3.

Accepting User Input with Touchscreens 199

Figure 10-3: Values that appear when the
touchscreen is not touched

It is important that you note these values, because you can use them to
detect when the screen is not being touched in your sketch.

Mapping the Touchscreen
By touching the corners of the touchscreen and recording the values
returned, you can actually map the touchscreen, as shown in Figure 10-4.
Basically, you’re plotting the coordinates for each corner. Once you have
determined these values, you can divide up the touchscreen map into
smaller areas for use as control surfaces.

X = 900
Y = 900

X = 900
Y = 150

X = 100
Y = 900

X = 100
Y = 150

Figure 10-4: A touchscreen map

After you’ve created your touchscreen map, you can divide it into
smaller regions and use the functions readX() and readY() to create a variety
of control regions on the screen, which you can then use with if-then state-
ments to cause specific actions to occur depending on where the screen is
touched, as you’ll see in Project 35.

200 Chapter 10

Project #35: Creating a Two-Zone On/Off Touch Switch

In this project, we’ll use our touchscreen map to create an on/off switch.
Start by dividing the touchscreen in half vertically, as shown in Figure 10-5:
the left side will be “on” and the right side will be “off.”

X = 900
Y = 900

X = 900
Y = 150

X = 100
Y = 900

X = 100
Y = 150

X = 500
Y = 900

X = 500
Y = 150

ON zone OFF zone

Figure 10-5: On/off switch map

The Arduino will determine which zone of the touchscreen is touched
by comparing the recorded coordinates of the touches to the boundaries of
each half of the screen. After the zone has been determined, a digital out-
put could send the on or off signal, but for this sketch we’ll simply display in
the Serial Monitor whether a zone has been turned on or off.

The Sketch
Enter and upload the following sketch:

// Project 35 - Creating a Two-Zone On/Off Touch Switch

int x,y = 0;

void setup()
{
 Serial.begin(9600);
 pinMode(10, OUTPUT);
}

void switchOn()
{
 digitalWrite(10, HIGH);
 Serial.print("Turned ON at X = ");
 Serial.print(x);

Accepting User Input with Touchscreens 201

 Serial.print(" Y = ");
 Serial.println(y);
 delay(200);
}

void switchOff()
{
 digitalWrite(10, LOW);
 Serial.print("Turned OFF at X = ");
 Serial.print(x);
 Serial.print(" Y = ");
 Serial.println(y);
 delay(200);
}

int readX() // returns the value of the touchscreen's x-axis
{
 int xr=0;
 pinMode(A0, INPUT);
 pinMode(A1, OUTPUT);
 pinMode(A2, INPUT);
 pinMode(A3, OUTPUT);
 digitalWrite(A1, LOW); // set A1 to GND
 digitalWrite(A3, HIGH); // set A3 as 5V
 delay(5);
 xr=analogRead(0);
 return xr;
}

int readY() // returns the value of the touchscreen's y-axis
{
 int yr=0;
 pinMode(A0, OUTPUT);
 pinMode(A1, INPUT);
 pinMode(A2, OUTPUT);
 pinMode(A3, INPUT);
 digitalWrite(A0, LOW); // set A0 to GND
 digitalWrite(A2, HIGH); // set A2 as 5V
 delay(5);
 yr=analogRead(1);
 return yr;
}

void loop()
{
 x=readX();
 y=readY();

X // test for ON

 if (x<=900 && x>=500)
 {
 switchOn();
 }

202 Chapter 10

Y // test for OFF

 if (x<500 && x>=100)
 {
 switchOff();
 }
}

How It Works
The two if functions used in void loop() check for a touch on the left or
right side of the screen. If the left side is touched, the touch is detected as
an “on” press at X. If the right side is touched (an “off” press), the touch is
detected at Y.

N O T E The y-axis is ignored because the touchscreen is split vertically. If we were to create
horizontal boundaries, the y-axis would need to be checked as well—as you’ll see in
Project 36.

Testing the Sketch
The resulting output of the sketch that appears in the Serial Monitor
is shown in Figure 10-6. The status of the switch and the coordinates are
shown after each screen touch.

Figure 10-6: Output from Project 35

Project #36: Creating a Three-Zone Touch Switch

In this project we’ll create a three-zone touch switch for an LED on digital
pin 3 that turns the LED on or off and adjusts the brightness using PWM
(Chapter 3).

Accepting User Input with Touchscreens 203

The Touchscreen Map
Our touchscreen map is shown in Figure 10-7.

X = 900
Y = 900

X = 900
Y = 150

X = 100
Y = 900

X = 100
Y = 150

Brightness

Minimum Maximum

X = 500
Y = 375

OFF zone ON zone

X = 100
Y = 375

X = 900
Y = 375

X = 500
Y = 150

Figure 10-7: Touchscreen map for Project 36

The touchscreen map is divided into “off” and “on” zones and a “bright-
ness” control zone. We measure the values returned by the touchscreen to
determine which part has been touched and then act accordingly.

The Sketch
Enter and upload the following sketch:

// Project 36 - Creating a Three-Zone Touch Switch

int x,y = 0;

void setup()
{
 pinMode(3, OUTPUT);
}

void switchOn()
{
 digitalWrite(3, HIGH);
 delay(200);
}

void switchOff()
{
 digitalWrite(3, LOW);
 delay(200);
}

204 Chapter 10

void setBrightness()
{
 int xx, bright;
 float br;
 xx=x-100;

X br=(800-xx)/255;
 bright=int(br);
 analogWrite(3, bright);
}

int readX() // returns the value of the touchscreen's x-axis
{
 int xr=0;
 pinMode(A0, INPUT);
 pinMode(A1, OUTPUT);
 pinMode(A2, INPUT);
 pinMode(A3, OUTPUT);
 digitalWrite(A1, LOW); // set A1 to GND
 digitalWrite(A3, HIGH); // set A3 as 5V
 delay(5);
 xr=analogRead(0);
 return xr;
}

int readY() // returns the value of the touchscreen's y-axis
{
 int yr=0;
 pinMode(A0, OUTPUT); // A0
 pinMode(A1, INPUT); // A1
 pinMode(A2, OUTPUT); // A2
 pinMode(A3, INPUT); // A3
 digitalWrite(A0, LOW); // set A0 to GND
 digitalWrite(A2, HIGH); // set A2 as 5V
 delay(5);
 yr=analogRead(1);
 return yr;
}

void loop()
{
 x=readX();
 y=readY();

// test for ON

Y if (x<=500 && x>=100 && y>= 150 && y<375)
 {
 switchOn();
 }

Accepting User Input with Touchscreens 205

// test for OFF

Z if (x>500 && x<=900 && y>= 150 && y<375)
 {
 switchOff();
 }

// test for brightness

[if (y>=375 && y<=900)
 {
 setBrightness();
 }
}

How It Works
As with the sketch for the two-zone map, this sketch will check for touches
in the “on” and “off” zones (which are now smaller) at Y and Z and for any
touches above the horizontal divider, which we’ll use to determine bright-
ness at [. If the screen is touched in the brightness area, the position on
the x-axis is converted to a relative value for PWM at X and the LED is
adjusted accordingly using the function setBrightness().

You can use these same basic functions to create any number of
switches or sliders with this simple and inexpensive touchscreen.

Looking Ahead
This chapter introduced you to another method of accepting user data and
controlling your Arduino. In the next chapter we’ll focus on the Arduino
board itself, learn about the different versions available, and create our own
version on a solderless breadboard.

11
M E E T T H E A R D U I N O F A M I LY

In this chapter you will

x� Learn how to build your own Arduino circuit on a solderless breadboard
x� Explore the features and benefits of a wide range of Arduino-compatible

boards
x� Learn about open-source hardware

We’ll break down the Arduino design into a group of parts, and then
you’ll build your own Arduino circuit on a solderless breadboard. Building
your own circuit can save you money, especially when you’re working with
changing projects and prototypes. You’ll also learn about some new com-
ponents and circuitry. Then we’ll explore ways to upload sketches to your
homemade Arduino that don’t require extra hardware. Finally, we’ll exam-
ine the more common alternatives to the Arduino Uno and explore their
differences.

208 Chapter 11

Project #37: Creating Your Own Breadboard Arduino

As your projects and experiments increase in complexity or number, the
cost of purchasing Arduino boards for each task can easily get out of hand,
especially if you like to work on more than one project at a time. At this
point, it’s cheaper and easier to integrate the circuitry of an Arduino board
into your project by building an Arduino circuit on a solderless breadboard
that you can then expand for your specific project. It should cost less than
$10 in parts to reproduce the basic Arduino circuitry on a breadboard
(which itself is usually reusable if you’re not too hard on it). It’s easier to
make your own if your project has a lot of external circuitry, because it saves
you running lots of wires from an Arduino back to the breadboard.

The Hardware
To build a minimalist Arduino, you’ll need the following hardware:

x� One breadboard
x� Various connecting wires
x� One 7805 linear voltage regulator
x� One 16 MHz crystal oscillator (such as Newark part number 16C8140)
x� One ATmega328P-PU microcontroller with Arduino bootloader
x� One 1 µF, 25 V electrolytic capacitor (C1)
x� One 100 µF, 25 V electrolytic capacitor (C2)
x� Two 22 pF, 50 V ceramic capacitors (C3 and C4)
x� Two 100 nF, 50 V ceramic capacitors (C5)
x� Two 560 : resistors (R1 and R2)
x� One 10 k: resistor (R3)
x� Two LEDs of your choice (LED1 and LED2)
x� One push button (S1)
x� One six-way header pin
x� One PP3-type battery snap
x� One 9 V PP3-type battery

Some of these parts might be new to you. In the following sections, we’ll
explain each part and show you an example and a schematic of each.

7805 Linear Voltage Regulator

A linear voltage regulator contains a simple circuit that converts one voltage to
another. The regulator included in the parts list is the 7805-type, which can
convert a voltage between 7 and 30 volts to a fixed 5 volts, with a current up
to 1 amp, which is perfect for running our breadboard Arduino. Figure 11-1
shows an example of a 7805 called a TO-220 style, which refers to its physi-
cal shape.

Meet the Arduino Family 209

Figure 11-1: 7805 linear voltage regulator

Figure 11-2 shows the schematic symbol for
the 7805. When you’re looking at the labeled side
of the 7805, the pin on the left is for input volt-
age, the center pin connects to GND, and the
right-hand pin is the 5 V output connection. The
metal tab at the top is drilled to allow it to con-
nect to a larger piece of metal known as a heat
sink. We use a heat sink when the circuit draws up
to the maximum of 1 amp of current, because the
7805 will become quite warm at that level of use.
The metal tab is also connected to GND. We will
need one 7805 regulator for our example.

16 MHz Crystal Oscillator

More commonly known as simply a crystal, the crystal oscillator creates an
electrical signal with a very accurate frequency. In this case, the frequency
is 16 MHz. The crystal we’ll use is shown in Figure 11-3.

Figure 11-3: Crystal oscillator

Compare this image to the crystal on your Arduino board. They should
be identical in shape and size.

7805

IN OUT
GND

1

2

3

Figure 11-2: 7805
schematic symbol

210 Chapter 11

Crystals are not polarized. The schematic
symbol is shown in Figure 11-4.

The crystal determines the microcon-
troller’s speed of operation. For example, the
microcontroller circuit we’ll be assembling
runs at 16 MHz, which means it can execute
16 million processor instructions per second.
That doesn’t mean it can execute a line of a
sketch or a function that rapidly, however,
since it takes many processor instructions to
interpret a single line of code.

Atmel ATmega328-PU Microcontroller IC

A microcontroller is a tiny computer that contains a processor that executes
instructions, various types of memory to hold data and instructions from
our sketch, and various ways to send and receive data. As explained in
Chapter 2, the microcontroller is the brains of our breadboard Arduino.
An example of the ATmega328P is shown in Figure 11-5. When looking at
the IC in the photo, notice that pin number 1 is at the bottom-left of the IC
and is marked by a small dot.

Figure 11-5: ATmega328P

The schematic symbol for the microcontroller is shown in Figure 11-6.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1516171819202122232425262728

32
8

AT
M

EG
A

Figure 11-6: Microcontroller schematic symbol

16 MHz

Figure 11-4: Crystal oscillator
schematic symbol

Meet the Arduino Family 211

Microcontrollers don’t all contain the Arduino bootloader, the software
that allows it to interpret sketches written for an Arduino. When choosing
a microcontroller to include in a homemade Arduino, be sure to select one
that already includes the bootloader. These are generally available from the
same retailers that sell Arduino boards, such as adafruit, Freetronics, and
SparkFun.

The Schematic
Figure 11-7 shows the circuit schematic.

9 V
battery

LED2 - indicator

LED1 - power

16 MHz
S1

D0 RTSGND

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1516171819202122232425262728

32
8

C1
1µF

C2
100µF

R1
560Ω

R2
560Ω

R3
10kΩ

C4
22pF

C3
22pF

C5
100nF

IN OUT
GND

7805

AT
M

EG
A+

+
+

−

GND 5V D1

Figure 11-7: Breadboard Arduino schematic

The schematic contains two sections. The first, on the left, is the
power supply, which reduces the voltage to a smooth 5 V. You’ll see
an LED that is lit when the power is on. The second section, on the right,
consists of the microcontroller, the reset button, the programming pins,
and another LED. This LED is wired to the ATmega328 pin that is used as
Arduino pin 13. Use the schematic to wire up your Arduino. Don’t forget
to run the wires to the six-way header pin (shown in Figure 11-8), repre-
sented by the six circles at the bottom of the schematic. We’ll use this con-
nection later in the chapter to upload a sketch to our homemade Arduino.

The circuit will be powered using a simple 9 V battery and matching
snap connector, as shown in Figure 11-9. Connect the red lead of the bat-
tery snap connector to the positive (+) point and the black lead to the nega-
tive (–) point on the left side of the circuit.

212 Chapter 11

Figure 11-8: Six-way header pin

Figure 11-9: 9 V battery and snap connector

Identifying the Arduino Pins

Where are all the Arduino pins on our homemade Arduino? All the ana-
log, digital, and other pins available on the normal Arduino board are also
available in our breadboard version; you simply need to connect directly to
the microcontroller.

Meet the Arduino Family 213

In our breadboard Arduino, the R2 and LED2 are on digital pin 13.
Table 11-1 lists the Arduino pins on the left and the matching ATmega328
pins on the right.

Table 11-1: Pins for ATmega328P

Arduino Pin Name ATmega328 Pin

RST 1
RX/D0 2
TX/D1 3
D2 4
D3 5
D4 6
(5 V only) 7
GND 8
D5 11
D6 12
D7 13
D8 14
D9 15
D10 16
D11 17
D12 18
D13 19
(5 V only) 20
AREF 21
GND 22
A0 23
A1 24
A2 25
A3 26
A4 27
A5 28

To avoid confusion, retailers such as adafruit and Freetronics sell
adhesive labels to place over the microcontroller, like the one shown on
the microcontroller in Figure 11-10 (order at http://www.freetronics.com/
mculabel/).

214 Chapter 11

Figure 11-10: Pin labels

Running a Test Sketch
Now it’s time to upload a sketch. We’ll start by uploading a simple sketch to
blink the LED:

// Project 37 - Creating Your Own Breadboard Arduino

void setup()
{
 pinMode(13, OUTPUT);
}

void loop()
{
 digitalWrite(13, HIGH);
 delay(1000);
 digitalWrite(13, LOW);
 delay(1000);
}

You can upload the sketch in one of three ways.

Use the Microcontroller Swap Method

The most inexpensive way to upload a sketch is to remove the microcontroller
from an existing Arduino, insert the microcontroller from your homemade
Arduino, upload the sketch, and then swap the microcontrollers again.

To remove a microcontroller from the Arduino safely, use an IC extrac-
tor, as shown in Figure 11-11.

Meet the Arduino Family 215

Figure 11-11: Use an IC extractor to remove a microcontroller.

When removing the microcontroller,
be sure to pull both ends out evenly and
slowly at the same time, and take your time!
Removing the component might be dif-
ficult, but eventually the microcontroller
will come out.

When inserting a microcontroller
into the breadboard or your Arduino, you
may have to bend the pins a little to make
them perpendicular with the body of the
microcontroller so that they can slide in
easily. To do this, place one side of the
component against a flat surface and gen-
tly push down; then repeat on the other
side, as shown in Figure 11-12.

Finally, when you return the original
microcontroller to your Arduino board,
remember that the end with the notch
should be on the right side, as shown in
Figure 11-13.

Connect to an Existing Arduino Board

We can use the USB interface of an Arduino Uno to upload sketches to the
microcontroller in our breadboard Arduino. Using this method reduces
wear on the Arduino board’s socket and saves you money, because you won’t
need to buy a separate USB programming cable.

Figure 11-12: Bending the micro-
controller pins

Figure 11-13: Correct orientation of
the microcontroller in an Arduino

216 Chapter 11

Here’s how to upload a sketch to the microcontroller using the USB
interface:

1. Remove the microcontroller from your Arduino Uno, and unplug the
USB cable.

2. Remove the power (if connected) from the breadboard Arduino circuit.
3. Connect a wire from Arduino digital pin 0 to pin 2 of the breadboard’s

ATmega328P, and connect another from Arduino digital pin 1 to pin 3
of the ATmega328P.

4. Connect the 5 V and GND from the Uno to the matching areas on the
breadboard.

5. Connect a wire from Arduino RST to pin 1 of the ATmega328P.
6. Plug the USB cable into the Arduino Uno board.

At this point, the system should behave as if it were an ordinary Arduino
Uno, so you should be able to upload sketches into the breadboard circuit’s
microcontroller normally and use the serial monitor if necessary.

Use an FTDI Programming Cable

The final method is the easiest, but it requires the purchase of a USB pro-
gramming cable, known as an FTDI cable (simply because the USB interface
circuitry inside is made by a company called FTDI). When purchasing an
FTDI cable, make sure it’s the 5 V model, because the 3.3 V model will not
work properly. This cable (shown in Figure 11-14) has a USB plug on one end
and a socket with six wires on the other. The USB end of this cable contains
circuitry equivalent to the USB interface on an Arduino Uno board. The six-
wire socket connects to the header pins shown in Figures 11-7 and 11-8.

Figure 11-14: FTDI cable

Meet the Arduino Family 217

When you’re connecting the cable, be sure that the side of the socket
with the black wire connects to the GND pin on the breadboard’s header
pins. Once the cable is connected, it also supplies power to the circuit, just
like a normal Arduino board would do.

Before uploading your sketch or using the serial monitor, change the
board type to Arduino Duemilanove or Nano w/ ATmega328 by choosing
Tools�Board and then selecting the correct microcontroller (Figure 11-15).

Figure 11-15: Changing the board type in the IDE

Once you have selected a method of uploading, test it by uploading the
Project 37 sketch. Now you should be able to design more complex circuits
using only a breadboard, which will let you create more projects for less
money. You can even build more permanent projects from scratch if you
learn to make your own printed circuit boards.

The Many Arduino Boards
Although we have been working exclusively with the Arduino Uno board
throughout the book, you can choose from many alternative boards. These
will vary in physical size, the number of input and output pins, memory
space for sketches, and purchase price.

One of the crucial differences between boards is the microcontroller
used. Current boards generally use the ATmega328 or the ATmega2560
microcontroller, and the Due uses another, more powerful version. The main
differences between the two (including both versions of the ATmega328)
are summarized in Table 11-2.

218 Chapter 11

Table 11-2: Microcontroller Comparison Chart

ATmega328P ATmega328P SMD ATmega2560 SAM3X8E

User replaceable? Yes No No No
Processing speed 16 MHz 16 MHz 16 MHz 84 MHz
Operating voltage 5 V 5 V 5 V 3.3 V
Number of
digital pins

14
(6 PWM–capable)

14
(6 PWM–capable)

54
(14 PWM–capable)

54
(12 PWM–capable)

Number of analog
input pins

6 8 16 12

DC current per
I/O pin

40 mA 40 mA 40 mA 3 to 15 mA

Available flash
memory

31.5KB 31.5KB 248KB 512KB

EEPROM size 1KB 1KB 4KB No EEPROM
SRAM size 2KB 2KB 8KB 96KB

The main parameters used to compare various Arduino-compatible
boards are the types of memory they contain and the amount of each type.
Following are the three types of memory:

x� Flash memory is the space available to store a sketch after it has been
compiled and uploaded by the IDE.

x� EEPROM (electrically erasable programmable read-only memory) is a small
space that can store byte variables, as you’ll learn in Chapter 16.

x� SRAM is the space available to store variables from your programs.

N O T E Many Arduino boards are available in addition to the Uno, and the few described
here are only the tip of the iceberg. When you’re planning large or complex projects,
don’t be afraid to scale up to the larger Mega boards. By the same token, if you
need only a few I/O pins for a more permanent project, consider the Nano or even
a LilyPad.

Let’s explore the range of the available boards.

Meet the Arduino Family 219

Arduino Uno
The Uno is currently considered the standard Arduino board. All Arduino
shields ever made should be compatible with the Uno. The Uno is consid-
ered to be the easiest-to-use Arduino board due to its built-in USB interface
and removable microcontroller.

Freetronics Eleven
Many boards on the market emulate the function of the Arduino Uno,
and some have even improved on the standard design. One of these is the
Freetronics Eleven, shown in Figure 11-16.

Figure 11-16: Freetronics Eleven

Although the Eleven is completely compatible with the Arduino Uno, it
offers several improvements that make it a worthwhile product. The first is
the large prototyping area just below the digital I/O pins. This area allows
you to construct your own circuit directly on the main board, which can
save space and money, since you won’t need to purchase a separate proto-
typing shield.

Second, the transmitter/receiver (TX/RX), power, and D13 LEDs are
positioned on the far-right side of the board; this placement allows them to
be visible even when a shield is attached. Finally, it uses a micro-USB socket,
which is much smaller than the standard USB socket used on the Uno. This
makes designing your own shield simpler, since you don’t have to worry
about your connections bumping into the USB socket. It is available from
http://www.freetronics.com/products/eleven/.

220 Chapter 11

The Freeduino
The Freeduino board comes from a collaborative open source project
that describes and publishes files to allow people to construct their own
Arduino-compatible boards. One of the more popular designs is the
Duemilanove-compatible board kit, shown in Figure 11-17.

Figure 11-17: An assembled Duemilanove-compatible Freeduino board

You can use the Freeduino board to run all the projects in this book.
Two of the major benefits of the Freeduino are that it’s cheap and that
assembling a board by hand is intrinsically satisfying. The Freeduino kit is
available from http://www.seeedstudio.com/.

The Boarduino
The Boarduino is a minimalist interpretation of an Arduino designed for
working with solderless breadboards. It comes in a kit and needs to be sol-
dered together. The assembled version is shown in Figure 11-18.

Figure 11-18: An assembled Boarduino

Meet the Arduino Family 221

The Boarduino kit is available from http://www.adafruit.com/. It offers all
the functionality of the Freeduino kit but requires a separate power supply
when more than 500 mA of current is required.

The Arduino Nano
When you need a compact, assembled Arduino-compatible board, the Nano
should fit the bill. Designed to work in a solderless breadboard, the Nano
(Figure 11-19) is a tiny but powerful Arduino.

Figure 11-19: An Arduino Nano

The Nano measures only 0.7 inches by 1.7 inches, yet it offers all the func-
tionality of the Boarduino and the Freeduino. Furthermore, it uses the SMD
version of the ATmega328P, so it has two extra analog input pins (A6 and
A7). The Nano is available from http://www.gravitech.us/arna30wiatp.html.

The Arduino LilyPad
The LilyPad is designed to be integrated
inside creative projects, such as wearable
electronics. In fact, you can actually wash a
LilyPad with water and a mild detergent, so
it’s ideal to use for lighting up a sweatshirt,
for example. The board design is unique,
as shown in Figure 11-20.

The I/O pins on the LilyPad require that
wires be soldered to the board, so the LilyPad
is more suited for use with permanent proj-
ects. As part of its minimalist design, it has no
voltage regulation circuitry, so it’s up to the
user to provide his or her own supply between

Figure 11-20: An Arduino
LilyPad

222 Chapter 11

2.7 and 5.5 V. The LilyPad also lacks a USB interface, so a 5 V FTDI cable
is required to upload sketches. You can get Arduino LilyPad boards from
almost any Arduino retailer.

The Arduino Mega 2560
When you run out of I/O pins on your Arduino Uno or you need space
for much larger sketches, consider a Mega 2560. It is physically a much
larger board than the Arduino, measuring 4.3 inches by 2.1 inches; it’s
shown in Figure 11-21.

Figure 11-21: Arduino Mega 2560

Although the Mega 2560 board is much larger than the Uno, you can
still use most Arduino shields with it, and Mega-sized prototyping shields
are available for larger projects that the Uno can’t accommodate. Since the
Mega uses the ATmega2560 microcontroller, its memory space and I/O
capabilities (as described in Table 11-2) are much greater than those of the
Uno. Additionally, four separate serial communication lines increase its
data transmission capabilities. You can get Mega 2560 boards from almost
any Arduino retailer.

The Freetronics EtherMega
When you need an Arduino Mega 2560, a microSD card shield, and
an Ethernet shield to connect to the Internet, your best alternative
is an EtherMega (Figure 11-22), because it has all these functions on
a single board and is less expensive than purchasing each component
separately. The EtherMega is available from http://www.freetronics.com/
ethermega/.

Meet the Arduino Family 223

Figure 11-22: Freetronics EtherMega

The Arduino Due
With an 84 MHz processor that can run your sketches much faster, this is the
most powerful Arduino board ever released. As you can see in Figure 11-23,
the board is quite similar to the Arduino Mega 2560, but there is an extra
USB port for external devices and different pin labels.

Figure 11-23: Arduino Due

224 Chapter 11

Furthermore, the Due has just over 16 times the memory of an Uno
board, so you can really create complex and detailed sketches. However,
the Due operates only on 3.3 V—so any circuits, shields, or other devices
connected to the analog or digital pins cannot have a voltage greater than
3.3 V. Despite these limitations, the benefits of using the Due outweigh the
changes in the hardware.

N O T E When shopping for your next Arduino board or accessory, be sure to buy from a repu-
table retailer that offers support and a guarantee. Although the Internet is flooded
with cheap alternatives, corners are often cut to produce products at abnormally low
prices, and you might have no way of seeking recompense if you’re sold a faulty or
incorrectly specified product.

Looking Ahead
This chapter has given you a broader picture of the types of hardware avail-
able, including a breadboard Arduino that you build yourself. You’ve seen
the parts that make up the Arduino design, and you’ve seen how to build
your own Arduino using a solderless breadboard. You now know how to make
more than one Arduino-based prototype without having to purchase more
boards. You also know about the variety of Arduino boards on the market,
and you should be able to select the Arduino board that best meets your
needs. Finally, you’ve gained an understanding of the Arduino open source
movement itself.

In the next chapter you’ll learn to use a variety of motors and begin
working on your own Arduino-controlled motorized tank!

OPE N SOURCE H A R DWA R E

The Arduino hardware design is released to the public so that anyone can
manufacture, modify, distribute, and use it as they see fit. This type of distribu-
tion falls under the umbrella of open source hardware—a recent movement that
is an antithesis to the concept of copyrights and legal protection of intellectual
property. The Arduino team decided to allow its designs to be free for the ben-
efit of the larger hardware community and for the greater good.

In the spirit of open source hardware, many organizations that produce
accessories or modifications of the original Arduino boards publish their
designs under the same license. This allows for a much faster process of prod-
uct improvement than would be possible for a single organization developing
the product alone.

12
M O T O R S A N D M O V E M E N T

In this chapter you will

x� Use a servo to create an analog thermometer
x� Learn how to control the speed and direction of electric motors
x� Use an Arduino motor shield
x� Begin work on a motorized tank robot
x� Use simple microswitches for collision avoidance
x� Use infrared and ultrasonic distance sensors for collision avoidance

Making Small Motions with Servos
A servo (short for servomechanism) contains an electric motor that can be
commanded to rotate to a specific angular position. For example, you might
use a servo to control the steering of a remote control car by connecting the
servo to a horn, a small arm or bar that the servo rotates. An example of a
horn is one of the hands on an analog clock. Figure 12-1 shows a servo and
three types of horns.

226 Chapter 12

Figure 12-1: Servo and various horns

Selecting a Servo
When you’re selecting a servo, consider several parameters:

x� Speed The time it takes for the servo to rotate, usually measured in
seconds per angular degree.

x� Rotational range The angular range through which the servo can
rotate—for example, 180 degrees (half of a full rotation) or 360 degrees
(one complete rotation).

x� Current How much current the servo draws. When using a servo with
an Arduino, you may need to use an external power supply for the servo.

x� Torque The amount of force the servo can exert when rotating. The
greater the torque, the heavier the item the servo can control. The torque
produced is generally proportional to the amount of current used.

The servo shown in Figure 12-1 is a hexTronik HXT900. It is inexpen-
sive and can rotate up to 180 degrees, as shown in Figure 12-2.

Motors and Movement 227

0°

90°

180°

Figure 12-2: Example servo rotation range

Connecting a Servo
It’s easy to connect a servo to an Arduino because only three wires are
involved. If you’re using the HXT900, the darkest wire connects to GND,
the center wire connects to 5 V, and the lightest wire (the pulse wire) con-
nects to a digital pin. If you’re using a different servo, check its data sheet
for the correct wiring.

Putting a Servo to Work
Now let’s put our servo to work. In this sketch, the servo will turn through
its rotational range. Connect the servo to your Arduino as described, with
the pulse wire connected to digital pin 4, and then enter and upload the
sketch in Listing 12-1.

// Listing 12-1

#include <Servo.h>
Servo myservo;

void setup()
{
 myservo.attach(4);
}

void loop()
{
 myservo.write(180);
 delay(1000);
 myservo.write(90);
 delay(1000);
 myservo.write(0);
 delay(1000);
}

Listing 12-1: Servo demonstration sketch

228 Chapter 12

In this sketch, we use the servo library included with the Arduino IDE
and create an instance of the servo with the following:

#include <Servo.h>
Servo myservo;

Then, in void setup(), we tell the Arduino which digital pin the servo
control is using:

myservo.attach(4); // control pin on digital four

Now we simply move the servo with the following:

myservo.write(x);

Here, x is an integer between 0 and 180 degrees—the angular position
to which the servo will be moved. When running the sketch in Listing 12-1,
the servo will rotate across its maximum range, stopping at the extremes
(0 degrees and 180 degrees) and at the midpoint (90 degrees). When look-
ing at your servo, note that the 180-degree position is on the left and 0 degrees
is on the right.

In addition to pushing or pulling objects, servos can also be used to
communicate data similar to an analog gauge. For example, you could use a
servo as an analog thermometer, as you’ll see in Project 38.

Project #38: Building an Analog Thermometer

Using our servo and the TMP36 temperature sensor from earlier chapters,
we’ll build an analog thermometer. We’ll measure the temperature and
then convert this measurement to an angle between 0 and 180 degrees to
indicate a temperature between 0 and 30 degrees Celsius. The servo will
rotate to the angle that matches the current temperature.

The Hardware
The required hardware is minimal:

x� One TMP36 temperature sensor
x� One breadboard
x� One small servo
x� Various connecting wires
x� Arduino and USB cable

Motors and Movement 229

The Schematic
The circuit is also very simple, as shown in Figure 12-3.

N/C

IO REF

SCL

SDA

RST

AREF

A0

A1

A2

A3

A4

A5

3V3 5V Vin

Analog Input

D11

D10

D9

D8

D7

D6

D5

D4

D3 PWM

TX

RX

PWM

PWM

PWM

PWM

PWM

D2

D1

D13

D12

D0
Di

gi
ta

l I
np

ut
/O

ut
pu

t

Power

Arduino

GND

TMP
36

+Vs

Vout

GND

Servo
1

2

3

+

pulse

−

Figure 12-3: Schematic for Project 38

The Sketch
The sketch will determine the temperature using the same method used
in Project 8. Then it will convert the temperature into an angular rotation
value for the servo.

Enter and upload the following sketch:

// Project 38 - Building an Analog Thermometer

float voltage = 0;
float sensor = 0;
float currentC = 0;
int angle = 0;

#include <Servo.h>
Servo myservo;

void setup()
{
 myservo.attach(4);
}

230 Chapter 12

int calculateservo(float temperature)
{
 float resulta;
 int resultb;
 resulta = -6 * temperature;
 resulta = resulta + 180;
 resultb = int(resulta);
 return resultb;
}

void loop()
{
 // read current temperature
 sensor = analogRead(0);
 voltage = (sensor*5000)/1024;
 voltage = voltage-500;
 currentC = voltage/10;

 // display current temperature on servo
 angle = calculateservo(currentC);
 // convert temperature to a servo position
 if (angle>=0 && angle <=30)
 {
 myservo.write(angle); // set servo to temperature
 delay(1000);
 }
}

Most of this sketch should be clear to you at this point, but the function
calculateservo() is new. This function converts the temperature into the
matching angle for the servo to use according to the following formula:

angle = (–6 × temperature) + 180

You might find it useful to make a backing sheet to show the range of
temperatures that the servo will display, with a small arrow to create a real-
istic effect. An example backing sheet is shown in Figure 12-4.

Figure 12-4: A backing sheet indicates the temperature on our thermometer.

Motors and Movement 231

Using Electric Motors
The next step in our motor-controlling journey is to work with small elec-
tric motors. Small motors are used for many applications, from small fans
to toy cars to model railroads. As with servos, you need to consider several
parameters when you’re choosing an electric motor:

x� The operating voltage This can vary, from 3 V to more than 12 V.
x� The current without a load The amount of current the motor uses at

its operating voltage while spinning freely, without anything connected
to the motor’s shaft.

x� The stall current The amount of current used by the motor when it is
trying to turn but cannot because of the load on the motor.

x� The speed at the operating voltage The motor’s speed in revolutions
per minute (RPM).

Our example will use a small,
inexpensive electric motor with a
speed of 8,540 RPM when running
on 3 V, similar to the one shown in
Figure 12-5.

To control our motor, we’ll use
a transistor, which was described in
Chapter 3. Because our motor uses
up to 0.7 A of current (more than
can be passed by the BC548 transis-
tor), we’ll use a transistor called a
Darlington for this project.

The TIP120 Darlington Transistor
A Darlington transistor can handle
high currents and voltages. The
TIP120 Darlington can pass up to
5 A of current at 60 V, which is more
than enough to control our small
motor. The TIP120 uses a similar
schematic symbol as the BC548, as
shown in Figure 12-6, but the TIP120
transistor is physically larger than
the BC548.

Figure 12-6: TIP120 schematic
symbol

Figure 12-5: Our small electric motor

232 Chapter 12

The TIP120 uses the TO-220 housing style, as shown in Figure 12-7.

Figure 12-7: The TIP120

When you’re looking at the TIP120 from the labeled side, the pins from
left to right are base (B), collector (C), and emitter (E). The metal heat
sink tab is also connected to the collector.

Project #39: Controlling the Motor

In this project, we’ll control the motor by adjusting the speed.

The Hardware
The following hardware is required:

x� One small 3 V electric motor
x� One 1 k: resistor (R1)
x� One breadboard
x� One 1N4004 diode
x� One TIP120 Darlington transistor
x� A separate 3 V power source
x� Various connecting wires
x� Arduino and USB cable

When working with motors, you must use a separate power source for
them, because the Arduino cannot supply enough current for the motor
in all possible situations. If the motor becomes stuck, then it will draw
up to its stall current, which could be more than 1 amp. That’s more than
the Arduino can supply, and if it attempts to supply that much current, the
Arduino could be permanently damaged.

A separate battery pack is a simple solution. For a 3 V supply, a two-
cell AA battery pack with flying leads will suffice, such as the one shown in
Figure 12-8.

E
C

B

Motors and Movement 233

Figure 12-8: Two-cell AA battery pack

The Schematic
Assemble the circuit as shown in the schematic in Figure 12-9.

N/C

IO REF

SCL

SDA

RST

AREF

A0

A1

A2

A3

A4

A5

3V3 5V Vin
Analog Input

D11

D10

D9

D8

D7

D6

D5

D4

D3 PWM

TX

RX

PWM

PWM

PWM

PWM

PWM

D2

D1

D13

D12

D0

Di
gi

ta
l I

np
ut

/O
ut

pu
t

Power

Arduino

GND

R1
1kΩ

Figure 12-9: Schematic for Project 39

234 Chapter 12

The Sketch
In this project, we’ll adjust the speed of the motor from still (zero) to the
maximum and then reduce it back to zero. Enter and upload the following
sketch:

// Project 39 - Controlling the Motor

void setup()
{
 pinMode(5, OUTPUT);
}

void loop()
{

X for (int a=0; a<256; a++)
 {
 analogWrite(5, a);

Y delay(100);
 }

Z delay(5000);
[for (int a=255; a>=0; a--)

 {
 analogWrite(5,a);
 delay(100);
 }
 delay(5000);
}

We control the speed of the motor using pulse-width modulation (as
explained in Project 3). Recall that we can do this only with digital pins
3, 5, 6, 9, 10, and 11. Using this method, current is applied to the motor
in short bursts: the longer the burst, the faster the speed, as the motor
is on more than it is off during a set period of time. So at X, the motor
speed starts from still and increases slowly; you can control the accelera-
tion by changing the delay value at Y. At Z, the motor is running as fast
as possible and holds that speed for 5 seconds. Then, from [, the process
reverses and the motor slows to a stop.

N O T E When it starts moving, you may hear a whine from the motor, which sounds similar
to the sound of an electric train or a tram when it moves away from a station. This is
normal and nothing to worry about.

Motors and Movement 235

The diode is used in the same way it was with the relay control circuit
described in Figure 3-19 on page 52 to protect the circuit. When the cur-
rent is switched off from the motor, stray current exists for a brief amount
of time inside the motor’s coil and has to go somewhere. The diode allows
the stray current to loop around through the coil until it dissipates as a tiny
amount of heat.

Project #40: Building and Controlling a Tank Robot

Although controlling the speed of one motor can be useful, let’s move into
more interesting territory by controlling two motors at once to affect their
speed and direction. Our goal is to describe the construction of a tank-style
robot that we’ll continue to work on in the next few chapters. Here we’ll
describe the construction and basic control of our tank.

Our tank has two motors that each control one tread, allowing it
to climb over small obstacles, rotate in one position, and not crash into
obstacles as it travels. You will be able to control the speed and direction of
travel, and you will also learn how to add parts for collision avoidance and
remote control. Once you have completed the projects in this book, you will
have a solid foundation for creating your own versions and bringing your
ideas to life.

The Hardware
The following hardware is required:

x� One Pololu RP5 Tank Chassis package
x� One Pololu RP5 Chassis plate
x� Six alkaline AA cells
x� One 9 V battery to DC socket cable
x� A DFRobot 2A Arduino Motor Shield
x� Arduino and USB cable

The Chassis

The foundation of any robot is a solid chassis containing the motors, drive-
train, and the power supply. An Arduino-powered robot also needs to have
room to mount the Arduino and various external parts.

You can choose from many chassis models available on the market, but
we’ll use a tank chassis—the Pololu RP5 series shown in Figure 12-10, which
contains two motors.

236 Chapter 12

Figure 12-10: Our tank chassis

Two Power Supplies

The Pololu chassis includes a holder for six AA cells, which we’ll use as the
power supply for the motors, as shown in Figure 12-11. The battery holder
sits in the base of the chassis between the motors and gives the robot a low
center of gravity.

Figure 12-11: Battery holder with six AA cells

Although the power supply in Figure 12-11 is large, we need to use a sepa-
rate power supply for our Arduino board, because this power will allow the
sketch to keep operating even if the motors fail. The power for the Arduino
in this project comes from a 9 V battery, which can be connected to the
power socket of the Arduino board using the cable shown in Figure 12-12.

Motors and Movement 237

Figure 12-12: Battery cable used to connect the battery to the Arduino

The Mounting Plate

The last part of our chassis is the mounting plate, which is shown in Figure 12-13.

Figure 12-13: Mounting plate

The mounting plate covers the top of the chassis and allows you to
bolt items on top using spacers and matching M3 screws. (Screws, spacers,
and washers should be available from a robotics parts supplier or a large
hardware store.) In Figure 12-14, you can see the mounting plate’s spacers
already fitted to hold our Arduino board.

238 Chapter 12

Figure 12-14: Arduino mounted on the plate

The Schematic
The final requirement is to create the circuitry to control the two motors
in the chassis. Although we could use the circuitry shown in Figure 12-9
for each of the motors, this wouldn’t allow us to control the direction
of the motor and could be somewhat inconvenient to wire up ourselves.
Instead, we use a motor shield. A motor shield contains the circuitry we
need to handle the higher current drawn by the motors and also accepts
commands from the Arduino to control the speed and direction of both
motors. For our tank, we’ll use a 2A Motor Shield for Arduino from
DFRobot (http://www.dfrobot.com/), as shown in Figure 12-15.

Figure 12-15: DFRobot motor shield

Motors and Movement 239

Connecting the Motor Shield

Making the required connections to the motor shield is simple: Connect
the wires from the battery pack to the terminal block at the bottom-left
of the shield, as shown in Figure 12-16. The black wire (negative) must be
on the right side and the red wire on the left.

Next connect the two pairs of wires from the motors. Make sure the
colors of the wires match the connections, as shown in Figure 12-17.

Connecting the Jumpers

The final task to set up the shield is to connect the appropriate jumpers.
Look between the DC power connection and the bottom row of sockets
on the shield, and you should see six pins with two black jumpers. Place
them horizontally so that they cover the four pins on the left, as shown in
Figure 12-18. Lastly, ensure that the four jumpers are connected vertically
across the PWM jumpers, as shown in Figure 12-19.

If your motor’s wires are not color-coded, you may have to swap them
after the first run to determine which way is forward or backward.

After you’ve connected the wiring and jumpers, inserted the bat-
tery pack, fitted the Arduino and shield to the mounting plate, and fas-
tened it to the chassis, your tank should look something like the one in
Figure 12-20.

Figure 12-16: DC power
connection

Figure 12-17: Connecting the motors

Figure 12-18: Setting the
correct power jumpers

Figure 12-19: Setting the correct mode jumpers

240 Chapter 12

Figure 12-20: Our tank bot is ready for action!

The Sketch
Now to get the tank moving. To begin, let’s create some functions to sim-
plify the movements. Because two motors are involved, we’ll need four
movements:

x� Forward motion
x� Reverse motion
x� Rotate clockwise
x� Rotate counterclockwise

Our motor shield controls each motor with two digital pins: One pin
is for speed control using PWM (as demonstrated in Project 39), and the
other determines the direction the motor will turn.

Four functions in our sketch match our four movements: goForward(),
goBackward(), rotateLeft(), and rotateRight(). Each accepts a value in milli-
seconds, which is the length of time required to operate the movement,
and a PWM speed value between 0 and 255. For example, to move for-
ward for 2 seconds at full speed, we’d use goForward(2000,255).

Motors and Movement 241

Enter and save the following sketch (but don’t upload it just yet):

// Project 40 - Building and Controlling a Tank Robot

int m1speed=6; // digital pins for speed control
int m2speed=5;
int m1direction=7; // digital pins for direction control
int m2direction=4;

void setup()
{
 pinMode(m1direction, OUTPUT);
 pinMode(m2direction, OUTPUT);
 delay(5000);
}

void goForward(int duration, int pwm)
{

X digitalWrite(m1direction,HIGH); // forward
 digitalWrite(m2direction,HIGH); // forward
 analogWrite(m1speed, pwm); // speed
 analogWrite(m2speed, pwm);
 delay(duration);
 analogWrite(m1speed, 0); // speed
 analogWrite(m2speed, 0);
}

void goBackward(int duration, int pwm)
{
 digitalWrite(m1direction,LOW); // backward

Y digitalWrite(m2direction,LOW); // backward
 analogWrite(m1speed, pwm); // speed
 analogWrite(m2speed, pwm);
 delay(duration);
 analogWrite(m1speed, 0); // speed
 analogWrite(m2speed, 0);
}

void rotateRight(int duration, int pwm)
{

Z digitalWrite(m1direction,HIGH); // forward
 digitalWrite(m2direction,LOW); // backward
 analogWrite(m1speed, pwm); // speed
 analogWrite(m2speed, pwm);
 delay(duration);
 analogWrite(m1speed, 0); // speed
 analogWrite(m2speed, 0);
}

242 Chapter 12

void rotateLeft(int duration, int pwm)
{

[digitalWrite(m1direction,LOW); // backward
 digitalWrite(m2direction,HIGH); // forward
 analogWrite(m1speed, pwm); // speed
 analogWrite(m2speed, pwm);
 delay(duration);
 analogWrite(m1speed, 0); // speed
 analogWrite(m2speed, 0);
}

void loop()
{
 goForward(1000, 255);
 rotateLeft(1000, 255);
 goForward(1000, 255);
 rotateRight(1000, 255);
 goForward(1000, 255);
 goBackward(2000, 255);
 delay(2000);
}

In the sketch, we set the direction of travel for each motor using

digitalWrite(m1direction,direction);

The value for direction is HIGH for forward or LOW for backward. There-
fore, to make the tank move forward, we set both motors the same way,
which has been done at X and Y. Next we set the speed of the motor
using the following:

 analogWrite(m1speed, pwm);

The value for pwm is the speed, between 0 and 255. To make the tank
rotate left or right, the motors must be set in opposite directions, as shown
at Z and [.

W A R N I N G When you’re ready to upload the sketch, position the tank either by holding it off your
work surface or by propping it up so that its treads aren’t in contact with a surface; if
you don’t do this, then when the sketch upload completes, the tank will burst into life
and leap off your desk after 5 seconds!

Upload the sketch, remove the USB cable, and connect the battery
cable to the Arduino power socket. Then place the tank on carpet or a
clean surface, and let it drive about. Experiment with the movement func-
tions in Project 40 to control your tank; this will help you become familiar
with the time delays and how they relate to distance traveled.

Motors and Movement 243

Sensing Collisions
Now that our tank can move, we can start to add basic intelligence, such as
collision sensors that can tell the tank when it has bumped into something
or that can measure the distance between the tank and an object in its path
so that it can avoid a crash. We’ll use three methods of collision avoidance:
microswitches, infrared, and ultrasonic.

Project #41: Detecting Tank Bot Collisions with a Microswitch

A microswitch can act like the simple push button we used in Chapter 4, but
the microswitch component is physically larger and includes a large metal
bar that serves as the actuator (see Figure 12-21).

Figure 12-21: Microswitch

When using the microswitch, you connect one wire to the bottom contact
and the other to the contact labeled “NO” (normally open) to ensure that
current flows only when the bar is pressed. We’ll mount the microswitch
on the front of our tank, and when the tank hits an object, the bar will be
pressed, causing current to flow and making the tank reverse direction or
take another action.

The Schematic
The microswitch hardware is wired like a single push button, as shown in
Figure 12-22.

244 Chapter 12

N/C

IO REF

SCL

SDA

RST

AREF

A0

A1

A2

A3

A4

A5

3V3 5V Vin

Analog Input

D11

D10

D9

D8

D7

D6

D5

D4

D3 PWM

TX

RX

PWM

PWM

PWM

PWM

PWM

D2

D1

D13

D12

D0

Di
gi

ta
l I

np
ut

/O
ut

pu
t

Power

Arduino

GND

R1
10kΩ

S1

Figure 12-22: The microswitch collision detector schematic

The Sketch
We connect the microswitch to an interrupts port (digital pin 2). Although
you might think we should have a function called by the interrupt to make
the tank reverse for a few moments, that’s not possible, because the delay()
function doesn’t operate inside functions called by interrupts. We have to
think a little differently in this case.

Instead, the function goForward() will turn on the motors if two condi-
tions are met for the variables crash and the Boolean move. If crash is true,
the motors will reverse at a slower speed for 2 seconds to “back out” from
a collision situation.

We can’t use delay() functions because of the interrupt, so we measure
the amount of time that the motors run reading millis() at the start and
compare that against the current value of millis(). When the difference is
greater than or equal to the required duration, move is set to false and the
motors stop.

Motors and Movement 245

Enter and upload the following sketch:

// Project 41 – Detecting Tank Bot Collisions with a Microswitch

int m1speed=6; // digital pins for speed control
int m2speed=5;
int m1direction=7; // digital pins for direction control
int m2direction=4;
boolean crash=false;

void setup()
{
 pinMode(m1direction, OUTPUT);
 pinMode(m2direction, OUTPUT);
 attachInterrupt(0, backOut, RISING);
 delay(5000);
}

X void backOut()
{
 crash=true;
}

Y void backUp()
{
 digitalWrite(m1direction,LOW); // reverse
 digitalWrite(m2direction,LOW); // reverse
 analogWrite(m1speed, 200); // speed
 analogWrite(m2speed, 200);
 delay(2000);
 analogWrite(m1speed, 0); // speed
 analogWrite(m2speed, 0);
}

void goForward(int duration, int pwm)
{
 long a,b;
 boolean move=true;

Z a=millis();
 do
 {
 if (crash==false)
 {
 digitalWrite(m1direction,HIGH); // forward
 digitalWrite(m2direction,HIGH); // forward
 analogWrite(m1speed, pwm); // speed
 analogWrite(m2speed, pwm);
 }
 if (crash==true)
 {
 backUp();
 crash=false;
 }

246 Chapter 12

[b=millis()-a;
 if (b>=duration)
 {
 move=false;
 }
 } while (move!=false);
 // stop motors
 analogWrite(m1speed, 0);
 analogWrite(m2speed, 0);
}

void loop()
{
 goForward(5000, 255);
 delay(2000);
}

This sketch uses an advanced method of moving forward, in that two
variables are used to monitor movement while the tank bot is in motion.
The first is the Boolean variable crash. If the tank bot bumps into some-
thing and activates the microswitch, then an interrupt is called, which runs
the function backOut() at X. It is here that the variable crash is changed from
false to true. The second variable that is monitored is the Boolean variable
move. In the function goForward(), we use millis() at Z to calculate constantly
whether the tank bot has finished moving for the required period of time
(set by the parameter duration).

At [, the function calculates whether the elapsed time is less than the
required time, and if so, the variable move is set to true. Therefore, the tank
bot is allowed to move forward only if it has not crashed and not run out of
time. If a crash has been detected, the function backUp() at Y is called, at
which point the tank will reverse slowly for 2 seconds and then resume as
normal.

N O T E You can add the other movement functions from Project 40 to expand or modify
this example.

Infrared Distance Sensors
Our next method of collision avoidance uses an infrared (IR) distance sen-
sor. This sensor bounces an infrared light signal off a surface in front of it
and returns a voltage that is relative to the distance between the sensor and
the surface. Infrared sensors are useful for collision detection because they
are inexpensive, but they’re not ideal for exact distance measuring. We’ll
use the Sharp GP2Y0A21YK0F analog sensor for our project, as shown in
Figure 12-23.

Motors and Movement 247

Figure 12-23: The Sharp IR sensor

Wiring It Up
To wire the sensor, connect the red and black wires on the sensor to 5 V
and GND, respectively, with the white wire connecting to an analog input
pin on your Arduino. We’ll use analogRead() to measure the voltage returned
from the sensor. The graph in Figure 12-24 shows the relationship between
the distance measured and the output voltage.

Figure 12-24: Graph of IR sensor distance versus output voltage

Testing the IR Distance Sensor
Because the relationship between distance and output is not easily repre-
sented with an equation, we’ll categorize the readings into 5 cm stages. To
demonstrate this, we’ll use a simple example. Connect your infrared sensor’s

248 Chapter 12

white lead to analog pin 0, the red lead to 5 V, and the black lead to GND,
and then enter and upload the sketch shown in Listing 12-2.

// Listing 12-2

float sensor = 0;
int cm = 0;

void setup()
{
 Serial.begin(9600);
}

void loop()
{

X sensor = analogRead(0);
Y if (sensor<=90)

 {
 Serial.println("Infinite distance!");
 } else if (sensor<100) // 80cm
 {
 cm = 80;
 } else if (sensor<110) // 70 cm
 {
 cm = 70;
 } else if (sensor<118) // 60cm
 {
 cm = 60;
 } else if (sensor<147) // 50cm
 {
 cm = 50;
 } else if (sensor<188) // 40 cm
 {
 cm = 40;
 } else if (sensor<230) // 30cm
 {
 cm = 30;
 } else if (sensor<302) // 25 cm
 {
 cm = 25;
 } else if (sensor<360) // 20cm
 {
 cm = 20;
 } else if (sensor<505) // 15cm
 {
 cm = 15;
 } else if (sensor<510) // 10 cm
 {
 cm = 10;
 } else if (sensor>=510) // too close!
 {
 Serial.println("Too close!");
 }

Motors and Movement 249

 Serial.print("Distance: ");
 Serial.print(cm);
 Serial.println(" cm");
 delay(250);
}

Listing 12-2: IR sensor demonstration sketch

The sketch reads the voltage from the IR sensor at X and then uses a
series of if statements at Y to choose which approximate distance is being
returned. We determine the distance from the voltage returned by the sen-
sor using two parameters. The first is the voltage-to-distance relationship
as displayed in Figure 12-24. Then, using the knowledge (from Project 6)
that analogRead() returns a value between 0 and 1,023 relative to a voltage
between 0 and around 5 V, we can calculate the approximate distance
returned by the sensor.

After uploading the sketch, open the Serial Monitor and experiment by
moving your hand or a piece of paper at various distances from the sensor.
The Serial Monitor should return the approximate distance, as shown in
Figure 12-25.

Figure 12-25: Results of Listing 12-2

Project #42: Detecting Tank Bot Collisions with
IR Distance Sensor

Now let’s use the IR sensor with our tank bot instead of the microswitch.
We’ll use a slightly modified version of Project 41. Instead of using an inter-
rupt, we’ll create the function checkDistance() that changes the variable crash
to true if the distance measured by the IR sensor is around 20 cm or less.
We’ll use this in the goForward() forward motion do... while loop.

250 Chapter 12

Connect the IR sensor to your tank, and then enter and upload this sketch:

// Project 42 - Detecting Tank Bot Collisions with IR Distance Sensor

int m1speed=6; // digital pins for speed control
int m2speed=5;
int m1direction=7; // digital pins for direction control
int m2direction=4;
boolean crash=false;

void setup()
{
 pinMode(m1direction, OUTPUT);
 pinMode(m2direction, OUTPUT);
 delay(5000);
}

void backUp()
{
 digitalWrite(m1direction,LOW); // reverse
 digitalWrite(m2direction,LOW); // reverse
 analogWrite(m1speed, 200);// speed
 analogWrite(m2speed, 200);
 delay(2000);
 analogWrite(m1speed, 0);// speed
 analogWrite(m2speed, 0);
}

void checkDistance()
{

X if (analogRead(0)>460)
 {
 crash=true;
 }
}

void goForward(int duration, int pwm)
{
 long a,b;
 boolean move=true;
 a=millis();
 do
 {
 checkDistance();
 if (crash==false)
 {
 digitalWrite(m1direction,HIGH); // forward
 digitalWrite(m2direction,HIGH); // forward
 analogWrite(m1speed, pwm); // speed
 analogWrite(m2speed, pwm);
 }
 if (crash==true)
 {
 backUp();

Motors and Movement 251

 crash=false;
 }
 b=millis()-a;
 if (b>=duration)
 {
 move=false;
 }
 } while (move!=false);
 // stop motors
 analogWrite(m1speed, 0);
 analogWrite(m2speed, 0);
}

void loop()
{
 goForward(5000, 255);
 delay(2000);
}

This sketch operates using the same methods used in Project 41, except
this version constantly takes distance measurements at X and sets the crash
variable to true if the distance between the IR sensor and an object is less
than about 20 cm.

After running the tank and using this sensor, you should see the benefits
of using a noncontact collision sensor. It’s simple to add more sensors to
the same tank, such as sensors at the front and rear or at each corner. You
should be able to add code to check each sensor in turn and make a deci-
sion based on the returned distance value.

Ultrasonic Distance Sensors
Our final method of collision avoidance is an ultrasonic distance sensor. This
sensor bounces a sound wave of a frequency (that cannot be heard by the
human ear) off a surface and measures the amount of time it takes for the
sound to return to the sensor. We’ll use the Parallax Ping))) ultrasonic dis-
tance sensor, shown in Figure 12-26, for this project, because it’s inexpensive
and accurate down to 1 cm.

Figure 12-26: The Ping))) ultrasonic distance sensor

252 Chapter 12

An ultrasonic sensor’s accuracy and range mean it can measure distances
between 2 and 300 cm. However, because the sound wave needs to be reflected
back to the sensor, the sensor must be angled less than 45 degrees away
from the direction of travel.

Connecting the Ultrasonic Sensor
To connect the sensor, attach the 5 V and GND leads to their respective
pins, and attach the SIG (short for signal) pin to any Arduino digital pin.

Using the Ultrasonic Sensor
The ultrasonic sensor takes measurements only when requested to do so.
To take a measurement, we send a very short HIGH signal of 5 microseconds
(mS) to the SIG pin. After a moment, the sensor should return a HIGH signal
whose length is the period of time the ultrasonic sound takes to travel from
and to the sensor; this value should be halved to determine the actual dis-
tance between the sensor and the object.

We need to use the same digital pin for output and input, and two new
functions:

x� delayMicroseconds(mS) Pauses the Arduino sketch in microseconds (mS)
x� pulseDuration(pin, HIGH) Measures the length of a HIGH pulse on digital

pin pin and returns the time in microseconds

After we have the duration of the incoming pulse, we convert it to centi-
meters by dividing it by 29.412 (because the speed of sound is 340 meters
per second, or 34 cm per millisecond).

Testing the Ultrasonic Distance Sensor
To simplify using the sensor, we use the function getDistance() in Listing 12-3.
Connect your ultrasonic sensor with the SIG pin to digital pin 3, and then
enter and upload the following.

// Listing 12-3

int signal=3;

void setup()
{
 pinMode(signal, OUTPUT);
 Serial.begin(9600);
}

int getDistance()

Motors and Movement 253

// returns distance from Ping))) sensor in cm
{
 int distance;
 unsigned long pulseduration=0;

 // get the raw measurement data from Ping)))
 // set pin as output so we can send a pulse

X pinMode(signal, OUTPUT);

 // set output to LOW
 digitalWrite(signal, LOW);
 delayMicroseconds(5);

Y // send the 5uS pulse out to activate Ping)))
 digitalWrite(signal, HIGH);
 delayMicroseconds(5);
 digitalWrite(signal, LOW);

Z // change the digital pin to input to read the incoming pulse
 pinMode(signal, INPUT);

 // measure the length of the incoming pulse
 pulseduration=pulseIn(signal, HIGH);

[// divide the pulse length in half
 pulseduration=pulseduration/2;

\ // convert to centimeters
 distance = int(pulseduration/29);
 return distance;
}

void loop()
{
 Serial.print(getDistance());
 Serial.println(" cm ");
 delay(500);
}

Listing 12-3: Ultrasonic sensor demonstration

The distance is returned by the function int getDistance(). By fol-
lowing X through \, you can see how the pulse is sent to the sensor and
then how the time of return is measured, which is used to calculate the
distance.

After uploading the sketch, open the Serial Monitor and move an object
toward and away from the sensor. The distance to the object should be
returned in centimeters, as shown in Figure 12-27.

254 Chapter 12

Figure 12-27: Results from Listing 12-3

Project #43: Detecting Tank Bot Collisions with an Ultrasonic
Distance Sensor

Now that you understand how the sensor works, let’s use it with our tank.

The Sketch
We can use the getDistance() function from Listing 12-3 to create a test for
impending collision. In the following sketch, we check for distances of less
than 10 cm, which will give the tank a reason to back up. Enter and upload
the following sketch to see for yourself:

// Project 43 - Detecting Tank Bot Collisions with an Ultrasonic Distance
// Sensor

int m1speed=6; // digital pins for speed control
int m2speed=5;
int m1direction=7; // digital pins for direction control
int m2direction=4;
int signal=3;
boolean crash=false;

void setup()
{
 pinMode(m1direction, OUTPUT);
 pinMode(m2direction, OUTPUT);
 pinMode(signal, OUTPUT);
 delay(5000);
 Serial.begin(9600);
}

Motors and Movement 255

int getDistance()
// returns distance from Ping))) sensor in cm
{
 int distance;
 unsigned long pulseduration=0;

 // get the raw measurement data from Ping)))
 // set pin as output so we can send a pulse
 pinMode(signal, OUTPUT);

 // set output to LOW
 digitalWrite(signal, LOW);
 delayMicroseconds(5);

 // send the 5uS pulse out to activate Ping)))
 digitalWrite(signal, HIGH);
 delayMicroseconds(5);
 digitalWrite(signal, LOW);

 // change the digital pin to input to read the incoming pulse
 pinMode(signal, INPUT);

 // measure the length of the incoming pulse
 pulseduration=pulseIn(signal, HIGH);

 // divide the pulse length in half
 pulseduration=pulseduration/2;

 // convert to centimeters
 distance = int(pulseduration/29);
 return distance;
}

void backUp()
{
 digitalWrite(m1direction,LOW); // go back
 digitalWrite(m2direction,LOW);
 delay(2000);
 digitalWrite(m1direction,HIGH); // go left
 digitalWrite(m2direction,LOW);
 analogWrite(m1speed, 200); // speed
 analogWrite(m2speed, 200);
 delay(2000);
 analogWrite(m1speed, 0); // speed
 analogWrite(m2speed, 0);
}

void goForward(int duration, int pwm)
{
 long a,b;
 int dist=0;
 boolean move=true;
 a=millis();
 do

256 Chapter 12

 {
 dist=getDistance();
 Serial.println(dist);

X if (dist<10) // if less than 10cm from object
 {
 crash=true;
 }
 if (crash==false)
 {
 digitalWrite(m1direction,HIGH); // forward
 digitalWrite(m2direction,HIGH); // forward
 analogWrite(m1speed, pwm); // speed
 analogWrite(m2speed, pwm);
 }
 if (crash==true)
 {
 backUp();
 crash=false;
 }
 b=millis()-a;
 if (b>=duration)
 {
 move=false;
 }
 } while (move!=false);
 // stop motors
 analogWrite(m1speed, 0);
 analogWrite(m2speed, 0);
}

void loop()
{
 goForward(1000, 255);
}

Once again, we constantly measure the distance at X and then change
the variable crash to true if the distance between the ultrasonic sensor and
object is less than 10 cm. Watching the tank magically avoid colliding with
things or having a battle of wits with a pet can be quite amazing.

Looking Ahead
In this chapter you learned how to introduce your Arduino-based projects
to the world of movement. Using simple motors, or pairs of motors, with the
motor shield, you can create projects that can move on their own and even
avoid obstacles. We used three types of sensors to demonstrate a range of
accuracies and sensor costs, so you can now make decisions based on your
requirements and project budget.

By now, I hope you are experiencing and enjoying the ability to design
and construct such things. But it doesn’t stop here. In the next chapter, we
move outdoors and harness the power of satellite navigation.

13
U S I N G G P S

W I T H Y O U R A R D U I N O

In this chapter, you will

x� Learn how to connect a GPS shield
x� Create a simple GPS coordinates display
x� Show the actual position of GPS coordinates on a map
x� Build an accurate clock
x� Record the position of a moving object over time

You’ll learn how to use an inexpensive GPS shield to determine loca-
tion, create an accurate clock, and also make a logging device that records
the position over time onto a microSD card, which can then be plotted over
a map to display the movement history.

258 Chapter 13

What Is GPS?
The Global Positioning System (GPS) is a satellite-based navigation system that
sends data from satellites orbiting Earth to GPS receivers on the ground
that can use that data to determine position and the current time anywhere
on Earth. You are probably already familiar with GPS navigation devices
used in cars or on your cell phone.

Although we can’t create detailed map navigation systems with our
Arduino, we can use a GPS module to determine position, time, and your
approximate speed (if you’re traveling). We’ll do this by using the EM406
GPS receiver module shown in Figure 13-1.

Figure 13-1: EM406 GPS receiver

To use this receiver, you’ll need the GPS shield kit from SparkFun (part
number RTL-10709) shown in Figure 13-2. This part includes the receiver, a
matching Arduino shield, and the connection cable.

Figure 13-2: Complete GPS shield bundle

Using GPS with Your Arduino 259

You should also purchase a 1-foot-long cable (SparkFun part number
GPS-09123), as shown in Figure 13-3, which will make placement of the
receiver much simpler.

Figure 13-3: A long GPS-receiver-to-shield cable

Testing the GPS Shield
After you buy the GPS kit, it’s a good idea to make sure that it’s working and
that you can receive GPS signals. GPS receivers require a line of sight to the
sky, but their signals can pass through windows. It’s usually best to perform
this test outdoors, but it might work just fine through an unobstructed win-
dow or skylight. To test reception, you’ll set up the shield and run a basic
sketch that displays the raw received data.

To perform the test, first connect your GPS receiver via the cable to
the shield, and then attach this assembly to your Arduino. Notice the small
switch on the GPS shield, which is shown in Figure 13-4.

Figure 13-4: GPS shield data switch

260 Chapter 13

When it’s time to upload and run sketches on your GPS shield, move
the switch to the DLINE position, and then change it to UART and be sure
to turn on the power switch for the receiver.

Enter and upload the sketch in Listing 13-1.

// Listing 13-1

void setup()
{

X Serial.begin(4800);
}

void loop()
{
 byte a

Y if (Serial.available() > 0)
 {
 a = Serial.read(); // get the byte of data from the GPS

Z Serial.write(a);
 }
}

Listing 13-1: Basic test sketch

This sketch listens to the serial port at Y, and when a byte of data is
received from the GPS module, it is sent to the Serial Monitor at Z. (Notice
that we start the Serial at 4,800 bps at X to match the data speed of the
GPS receiver.)

Once you’ve uploaded the sketch, move the data switch back to
UART. Now check the LED on the GPS receiver that tells us its status.
If the LED is lit, the GPS is trying to lock onto the satellite signals. After
about 30 seconds the LED should start blinking, which indicates that it is
receiving data from the satellite. After the LED starts blinking, open the
Serial Monitor window in the IDE and set the data speed to 4,800 baud.
You should see a constant stream of data similar to the output shown in
Figure 13-5.

Figure 13-5: Raw data from GPS satellites

Using GPS with Your Arduino 261

The data is sent from the GPS receiver to the Arduino one character at
a time, and then it is sent to the Serial Monitor. But this isn’t very useful as
is, so we need to use a new library that extracts information from this raw
data and converts it to a usable form. To do this, download and install the
TinyGPS library from http://www.arduiniana.org/libraries/tinygps/ using the
method described in “Expanding Sketches with Libraries” on page 169.

Project #44: Creating a Simple GPS Receiver

Now let’s create a simple GPS receiver. But
first, because you’ll usually use your GPS out-
doors—and to make things a little easier—
we’ll add an LCD module to display the data,
similar to the one shown in Figure 13-6.

N O T E Our examples are based on using the Freetronics LCD
& Keypad shield. For more information on this shield,
see http://www.freetronics.com/collections/
display/products/lcd-keypad-shield/. If you
choose to use a different display module, be sure to
substitute the correct values into the LiquidCrystal
function in your sketches.

To display the current position coordinates received by the GPS on
the LCD, we’ll create a very basic portable GPS that could be powered by a
9 V battery and connector.

The Hardware
The required hardware is minimal:

x� Arduino and USB cable
x� LCD module or Freetronics LCD shield (mentioned earlier)
x� One 9 V battery to DC socket cable
x� One SparkFun GPS shield kit

The Sketch
Enter and upload the following sketch:

// Project 44 - Creating a Simple GPS Receiver
X #include <TinyGPS.h>

#include <LiquidCrystal.h>
LiquidCrystal lcd(8, 9, 4, 5, 6, 7);

// Create an instance of the TinyGPS object
TinyGPS gps;

Figure 13-6: The Freetronics
LCD & Keypad shield

262 Chapter 13

Y void getgps(TinyGPS &gps);

void setup()
{
 Serial.begin(4800);
 lcd.begin(16, 2);
}

void getgps(TinyGPS &gps)
// The getgps function will display the required data on the LCD
{
 float latitude, longitude;
 //decode and display position data

Z gps.f_get_position(&latitude, &longitude);
 lcd.setCursor(0,0);
 lcd.print("Lat:");
 lcd.print(latitude,5);
 lcd.print(" ");
 lcd.setCursor(0,1);
 lcd.print("Long:");
 lcd.print(longitude,5);
 lcd.print(" ");
 delay(3000); // wait for 3 seconds
 lcd.clear();
}

void loop()
{
 byte a;
 if (Serial.available() > 0) // if there is data coming into the serial line
 {
 a = Serial.read(); // get the byte of data
 if(gps.encode(a)) // if there is valid GPS data...
 {

[getgps(gps); // grab the data and display it on the LCD
 }
 }
}

From X to Y, the sketch introduces the required libraries for the
LCD and GPS. In void loop at [, we send the characters received from the
GPS receiver to the function getgps() at Z, which uses gps.f_get_position()
to insert the position values in the byte variables &latitude and &longitude
(which we display on the LCD).

Displaying the Position on the LCD
After the sketch has been uploaded and the GPS starts receiving data, your
current position in decimal latitude and longitude should be displayed on
your LCD, as shown in Figure 13-7.

Using GPS with Your Arduino 263

Figure 13-7: Latitude and longitude display from Project 44

But where on Earth is this? We can determine exactly where it is by
using Google Maps (http://maps.google.com/). On the website, enter the
latitude and longitude, separated by a comma and a space, into the search
field, and Google Maps will return the location. For example, using the
coordinates returned in Figure 13-7 produces a map like the one shown in
Figure 13-8.

Figure 13-8: Location of position displayed in Figure 13-7

Project #45: Creating an Accurate GPS-based Clock

There is more to a GPS than finding a location; the system also transmits
time data that can be used to make a very accurate clock.

The Hardware
For this project, we’ll use the same hardware from Project 44.

264 Chapter 13

The Sketch
Enter the following sketch to build a GPS clock:

// Project 45 - Creating an Accurate GPS-based Clock
#include <TinyGPS.h>
#include <LiquidCrystal.h>
LiquidCrystal lcd(8, 9, 4, 5, 6, 7);

// Create an instance of the TinyGPS object
TinyGPS gps;

void getgps(TinyGPS &gps);

void setup()
{
 Serial.begin(4800);
 lcd.begin(16, 2);
}

void getgps(TinyGPS &gps)
{
 int year,a,t;
 byte month, day, hour, minute, second, hundredths;

X gps.crack_datetime(&year,&month,&day,&hour,&minute,&second,&hundredths);

Y hour=hour+10; // correct for your time zone
 if (hour>23)
 {
 hour=hour-24;
 }
 lcd.setCursor(0,0); // print the date and time

Z lcd.print("Current time: ");
 lcd.setCursor(4,1);
 if (hour<10)
 {
 lcd.print("0");
 }
 lcd.print(hour, DEC);
 lcd.print(":");
 if (minute<10)
 {
 lcd.print("0");
 }
 lcd.print(minute, DEC);
 lcd.print(":");
 if (second<10)
 {
 lcd.print("0");
 }
 lcd.print(second, DEC);
}

Using GPS with Your Arduino 265

void loop()
{
 byte a;
 if (Serial.available() > 0) // if there is data coming into the serial line
 {
 a = Serial.read(); // get the byte of data
 if(gps.encode(a)) // if there is valid GPS data...
 {
 getgps(gps); // then grab the data and display it on the LCD
 }
 }
}

This example works in a similar way to Project 44, except that instead
of extracting the position data, the sketch extracts the time (always at
Greenwich Mean Time, more commonly known as UTC) at X. At Y, you
can either add or subtract a number of hours to bring the clock into line
with your current time zone. The time should then be formatted clearly and
displayed on the LCD at Z. Figure 13-9 shows an example of the clock.

Figure 13-9: Project 45 at work

Project #46: Recording the Position of a Moving Object
over Time

Now that you know how to receive GPS coordinates and convert them into
normal variables, we can use this information with the microSD card shield
from Chapter 8 to build a GPS logger. Our logger will record our position
over time by logging the GPS data over time. The addition of the microSD
card shield will allow you to record the movement of a car, truck, boat, or
any other moving object that allows GPS signal reception; later, you can
review the information on a computer.

The Hardware
The required hardware is the same as that used for the previous examples,
except that you need to replace the LCD shield with the microSD shield
from Chapter 8, and you’ll use external power. In our example, we’ll record
the time, position information, and estimated speed of travel.

266 Chapter 13

The Sketch
After assembling your hardware, enter and upload the following sketch:

// Project 46 - Recording the Position of a Moving Object over Time
#include <SD.h>
#include <TinyGPS.h>

// Create an instance of the TinyGPS object
TinyGPS gps;

void getgps(TinyGPS &gps);

void setup()
{
 pinMode(10, OUTPUT);
 Serial.begin(9600);
 // check that the microSD card exists and can be used
 if (!SD.begin(8)) {
 Serial.println("Card failed, or not present");
 // stop the sketch
 return;
 }
 Serial.println("microSD card is ready");
}

void getgps(TinyGPS &gps)
{
 float latitude, longitude;
 int year;
 byte month, day, hour, minute, second, hundredths;

 //decode and display position data
 gps.f_get_position(&latitude, &longitude);
 File dataFile = SD.open("DATA.TXT", FILE_WRITE);
 // if the file is ready, write to it

X if (dataFile)
 {

Y dataFile.print("Lat: ");
 dataFile.print(latitude,5);
 dataFile.print(" ");
 dataFile.print("Long: ");
 dataFile.print(longitude,5);
 dataFile.print(" ");
 // decode and display time data
 gps.crack_datetime(&year,&month,&day,&hour,&minute,&second,&hundredths);
 // correct for your time zone as in Project 45
 hour=hour+11;
 if (hour>23)
 {
 hour=hour-24;
 }

Using GPS with Your Arduino 267

 if (hour<10)
 {
 dataFile.print("0");
 }
 dataFile.print(hour, DEC);
 dataFile.print(":");
 if (minute<10)
 {
 dataFile.print("0");
 }
 dataFile.print(minute, DEC);
 dataFile.print(":");
 if (second<10)
 {
 dataFile.print("0");
 }
 dataFile.print(second, DEC);
 dataFile.print(" ");
 dataFile.print(gps.f_speed_kmph());

Z dataFile.println("km/h");
 dataFile.close();

[delay(30000); // record a measurement every 30 seconds
 }
}

void loop()
{
 byte a;
 if (Serial.available() > 0) // if there is data coming into the serial line
 {
 a = Serial.read(); // get the byte of data
 if(gps.encode(a)) // if there is valid GPS data...
 {

\ getgps(gps); // then grab the data and display it on the LCD
 }
 }
}

This sketch uses the same code used in Projects 44 and 45 in void loop()
to receive data from the GPS receiver and pass it on to other functions.
At \, the text from the GPS receiver is passed into the TinyGPS library to
decode the data into useful variables. At X, the microSD card is checked
to determine whether data can be written to it, and from Y to Z, the rele-
vant GPS data is written to the text file on the microSD card. Because the
file is closed after every write, you can remove the power source from the
Arduino without warning the sketch, and you should do so before inserting
or removing the microSD card. Finally, you can set the interval between
recording data at [by changing the value in the delay() function.

268 Chapter 13

Displaying Locations on a Map
After operating your GPS logger, the resulting text file should look similar
to Figure 13-10.

Figure 13-10: Results from Project 46

Once you have this data, you can enter it into Google Maps manually
and review the path taken by the GPS logger, point by point. But a more
interesting method is to display the entire route taken on one map. To do
this, open the text file as a spreadsheet, separate the position data, and add
a header row, as shown in Figure 13-11. Then save it as a .csv file.

Figure 13-11: Captured position data

Using GPS with Your Arduino 269

Now visit the GPS Visualizer website (http://www.gpsvisualizer.com/).
In the Get Started Now box, click Choose File and select your data file.
Choose Google Maps as the output format, and then click Go!. The move-
ment of your GPS logger should be shown on a map similar to the one in
Figure 13-12, which you can then adjust and explore.

Figure 13-12: Mapped GPS logger data

Looking Ahead
As you can see, something that you might have thought too complex,
such as working with GPS receivers, can be made pretty simply with your
Arduino. Continuing with that theme, in the next chapter you’ll learn how
to create your own wireless data links and control things via remote control.

14
W I R E L E S S D A T A

In this chapter you’ll learn how to send and receive
instructions and data using various types of wireless
transmission hardware. Specifically, you’ll learn how to

x� Send digital output signals using low-cost wireless modules
x� Create a simple and inexpensive wireless remote control system
x� Use XBee wireless data receivers and transceivers
x� Create a remote control temperature sensor

Using Low-cost Wireless Modules
It’s easy to send text information in one direction using a wireless link
between two Arduino-controlled systems that have inexpensive radio
frequency (RF) data modules, such as the transmitter module shown
in Figure 14-1. These modules are usually sold in pairs and are known
as RF Link modules or kits. Good examples are part WLS107B4B from
Seeed Studio and part WRL-10534 from SparkFun. We’ll use the most
common module types that run on the 433 MHz radio frequency in our
projects.

272 Chapter 14

The connections shown at the bottom of the module in Figure 14-1 are,
from left to right, 5 V, GND, data in, and an external antenna. The antenna
can be a single length of wire, or it can be omitted entirely for short trans-
mission distances. (Each brand of module can vary slightly, so check the
connections on your particular device before moving forward.)

Figure 14-2 shows the receiver module, which is slightly larger than the
transmitter module.

The connections on the receiver are straightforward: the V+ and V− pins
connect to 5 V and GND, respectively, and DATA connects to the Arduino
pin allocated to receive the data.

Before you can use these modules, you also need to download and
install the latest version of the VirtualWire library from http://www.open.com
.au/mikem/arduino/. After you’ve installed the library, you’ll be ready to
move on to the next section.

N O T E The RF Link modules are inexpensive and easy to use, but they have no error-checking
capability to ensure that data being sent is received correctly. Therefore, I recommend
that you use them only for simple tasks such as this basic remote control project. If
your project calls for more accurate and reliable data transmission, use something
like the XBee modules instead, which are discussed later in this chapter.

Project #47: Creating a Wireless Remote Control

We’ll remotely control two digital outputs: You’ll press buttons connected
to one Arduino board to control matching digital output pins on another
Arduino located some distance away. This project will show you how to use
the RF Link modules and how to determine what sort of distance you can
achieve remote control with the modules before you commit to using the
modules for more complex tasks. (In open air, the distance you can achieve
is generally about 100 meters, but the distance will be less when you are
indoors or when the modules are between obstacles.)

Figure 14-1: Transmitter
RF Link module

Figure 14-2: Receiver RF Link module

Wireless Data 273

The Hardware for the Transmitter Circuit
The following hardware is required for the transmitter circuit:

x� Arduino and USB cable
x� One 9 V battery and DC socket cable (as used in Chapter 12)
x� One 433 MHz RF Link transmitter module (such as SparkFun part

number WRL-10534)
x� Two 10 k: resistors (R1 and R2)
x� Two 100 nF capacitors (C1 and C2)
x� Two push buttons
x� One breadboard

The Transmitter Schematic
The transmitter circuit consists of two push buttons with debounce circuitry
connected to digital pins 2 and 3, and the transmitter module wired as
described earlier, as shown in Figure 14-3.

VDD

DATA

GND

ANT

N/C

IO REF

SCL

SDA

RST

AREF

A0

A1

A2

A3

A4

A5

3V3 5V Vin

Analog Input

D11

D10

D9

D8

D7

D6

D5

D4

D3 PWM

TX

RX

PWM

PWM

PWM

PWM

PWM

D2

D1

D13

D12

D0

Di
gi

ta
l I

np
ut

/O
ut

pu
t

Power

Arduino

GND

S2S1

C2
100nF

C1
100nF

R2
10kΩ

R1
10kΩ

Figure 14-3: Transmitter circuit for Project 47

274 Chapter 14

The Hardware for the Receiver Circuit
The following hardware is required for the receiver circuit:

x� Arduino and USB cable
x� One 9 V battery and DC socket cable (as used in Chapter 12)
x� One 433 MHz RF Link receiver module (such as SparkFun part num-

ber WRL-10532)
x� One breadboard
x� Two LEDs of your choice
x� Two 560 : resistors (R1 and R2)

The Receiver Schematic
The receiver circuit consists of two LEDs on digital pins 6 and 7, and the
data pin from the RF Link receiver module connected to digital pin 8, as
shown in Figure 14-4.

N/C

IO REF

SCL

SDA

RST

AREF

A0

A1

A2

A3

A4

A5

3V3 5V Vin

Analog Input

D11

D10

D9

D8

D7

D6

D5

D4

D3 PWM

TX

RX

PWM

PWM

PWM

PWM

PWM

D2

D1

D13

D12

D0

Di
gi

ta
l I

np
ut

/O
ut

pu
t

Power

Arduino

GND

VDD

DATA

GND

ANT

R2
560Ω

R1
560Ω

LED2LED1

Figure 14-4: Receiver circuit for Project 47

Wireless Data 275

You can substitute the breadboard,
LEDs, resistors, and receiver module with a
Freetronics 433 MHz receiver shield, shown
in Figure 14-5.

The Transmitter Sketch
Now let’s examine the sketch for the trans-
mitter. Enter and upload the following
sketch to the Arduino with the transmitter
circuit:

// Project 47 - Creating a Wireless Remote Control, Transmitter Sketch

X #include <VirtualWire.h>
uint8_t buf[VW_MAX_MESSAGE_LEN];
uint8_t buflen = VW_MAX_MESSAGE_LEN;

Y const char *on2 = "a";
const char *off2 = "b";
const char *on3 = "c";
const char *off3 = "d";

void setup()
{

Z vw_set_ptt_inverted(true); // Required for RF Link modules
 vw_setup(300); // set data speed

[vw_set_tx_pin(8);
 pinMode(2, INPUT);
 pinMode(3, INPUT);
}

void loop()
{

\ if (digitalRead(2)==HIGH)
 {
 vw_send((uint8_t *)on2, strlen(on2)); // send the data out to the world
 vw_wait_tx(); // wait a moment
 delay(200);
 }
 if (digitalRead(2)==LOW)
 {

] vw_send((uint8_t *)off2, strlen(off2));
 vw_wait_tx();
 delay(200);
 }
 if (digitalRead(3)==HIGH)
 {
 vw_send((uint8_t *)on3, strlen(on3));
 vw_wait_tx();
 delay(200);
 }

Figure 14-5: Freetronics
433 MHz receiver shield

276 Chapter 14

 if (digitalRead(3)==LOW)
 {
 vw_send((uint8_t *)off3, strlen(off3));
 vw_wait_tx();
 delay(200);
 }
 }

To use the RF Link modules, we use the virtual wire functions at X
and Z in the sketch. At [, we set digital pin 8, which is used to connect the
Arduino to the data pin of the transmitter module and to control the speed
of the data transmission. (You can use any other digital pins if necessary,
except 0 and 1, which would interfere with the serial line.)

The transmitter sketch reads the status of the two buttons connected to
digital pins 2 and 3 and sends a single text character to the RF Link module
that matches the state of the buttons. For example, when the button on dig-
ital pin 2 is HIGH, the Arduino sends the character a, and when the button is
LOW, it sends the character b. The four states are declared starting at Y.

The transmission of the text character is handled using one of the
four sections’ if statements, starting at \—for example, the contents of
the if-then statement at]. The variable transmitted is used twice—for
example, on2, as shown here:

vw_send((uint8_t *)on2, strlen(on2));

The function vw_send sends the contents of the variable on2, but it needs
to know the length of the variable in characters, so we use strlen() to accom-
plish this.

The Receiver Sketch
Now let’s add the receiver sketch. Enter and upload the following sketch to
the receiver circuit’s Arduino:

// Project 47 - Creating a Wireless Remote Control, Receiver Sketch
#include <VirtualWire.h>

uint8_t buf[VW_MAX_MESSAGE_LEN];
uint8_t buflen = VW_MAX_MESSAGE_LEN;

void setup()
{

X vw_set_ptt_inverted(true); // Required for RF link modules
 vw_setup(300);

Y vw_set_rx_pin(8);
 vw_rx_start();
 pinMode(6, OUTPUT);
 pinMode(7, OUTPUT);
}

Wireless Data 277

void loop()
{

Z if (vw_get_message(buf, &buflen))
 {

[switch(buf[0])
 {
 case 'a':
 digitalWrite(6, HIGH);
 break;
 case 'b':
 digitalWrite(6, LOW);
 break;
 case 'c':
 digitalWrite(7, HIGH);
 break;
 case 'd':
 digitalWrite(7, LOW);
 break;
 }
 }
}

As with the transmitter circuit, we use the virtual wire functions at X to
set up the RF Link receiver module, set the data speed, and set the Arduino
digital pin to which the link’s data output pin is connected at Y.

When the sketch is running, the characters sent from the transmitter
circuit are received by the RF Link module and sent to the Arduino. The
function vw_get_message() at Z takes the characters received by the Arduino,
which are interpreted by the switch-case function at [. For example, press-
ing button S1 on the transmitter circuit will send the character a. This char-
acter is received by the transmitter, which sets digital pin 6 to HIGH, turning
on the LED.

You can use this simple pair of demonstration circuits to create more
complex controls for Arduino systems by sending codes as basic characters
to be interpreted by a receiver circuit.

Using XBee Wireless Data Modules for Greater Range and
Faster Speed

When you need a wireless data link with greater range and a faster data
speed than what the basic wireless modules used earlier can provide, XBee
data modules may be the right choice. These modules transmit and receive
serial data directly to one or more XBee modules and to and from a com-
puter. Several models of XBee modules are available, but we’ll use the
Series 1 line of XBee transceivers, shown in Figure 14-6.

278 Chapter 14

Figure 14-6: Typical XBee transceiver

Connecting the transceiver to an Arduino is simple with an XBee
shield, shown in Figure 14-7.

Figure 14-7: XBee connected to an Arduino via a typical XBee shield

To communicate with a computer, you can use the XBee Explorer board,
such as the board shown in Figure 14-8 (SparkFun part WRL-08687).

Figure 14-8: XBee connected via USB
with an Explorer board

XBees don’t require their own library; they operate as a simple serial
data bridge that sends and receives data via the Arduino’s serial line.

Wireless Data 279

Project #48: Transmitting Data with an XBee

This project will demonstrate simple data transmission by sending data
from an Arduino to a computer that has an XBee and Explorer board. The
project involves two basics steps: First, we’ll connect an XBee to an XBee
shield. Then we’ll connect the shield to the Arduino.

Notice the tiny switch on the Arduino shield, as
shown in Figure 14-9.

This switch is identical to the switch on the GPS
shield used in Chapter 13. This data switch controls
whether data from the Arduino USB or the XBee is
sent to the microcontroller. When you’re uploading
a sketch, set the switch to DLINE; you’ll change it to
UART when you’re running a sketch.

The Sketch
Create and upload the following sketch:

// Project 48 - Transmitting Data with an XBee

void setup()
{
 Serial.begin(9600);
}

void loop()
{
 Serial.println("Hello, world");
 delay(1000);
}

Although this code simply sends the text Hello, world to the serial line, it
nicely demonstrates the simplicity of using XBee modules to send data: You
simply write to the serial line, and the XBee takes care of the rest. Remove
the USB cable from the Arduino board, and power the board using an
external supply such as the 9 V battery and cable from Chapter 12. (Don’t
forget to set the switch back to UART.)

Setting Up the Computer to Receive Data
Now let’s set up the computer to receive data. Using an Explorer board
(Figure 14-8), connect another XBee to your computer. Then download
and install the Terminal program, available for Windows from https://sites
.google.com/site/terminalbpp/. When you open Terminal, you should see a
screen like the one shown in Figure 14-10.

Figure 14-9: XBee
shield data switch

280 Chapter 14

Figure 14-10: Terminal emulator software

At the top of the screen, set the Baud Rate to 9600, Data Bits to 8,
Parity to none, Stop Bits to 1, and Handshaking to none. Then click the
ReScan button in the upper-left corner to force the software to select the
correct USB port. Finally, click Connect, and after a moment you should
see data being sent from the Arduino in the Terminal window, as shown
in Figure 14-11.

Figure 14-11: Reception of data from the remote XBee

You can attach multiple XBee transmitters to one computer, with
each sending its own data for monitoring purposes. For example, from
the comfort of your desk, you could monitor various sensors, such as tem-
perature sensors, placed throughout an area. You could even control mul-
tiple XBee-connected Arduinos using a similar method, as you’ll see in the
next project.

Wireless Data 281

Project #49: Building a Remote Control Thermometer

In this project, you’ll build a remote control thermometer that returns the
temperature upon request from your computer. In the process, you’ll learn
the basics of remote-sensor data retrieval and create a base for use with
other projects that involve remote sensing.

The Hardware
The following hardware is required:

x� Arduino and USB cable
x� One TMP36 temperature sensor
x� Two XBee (Series 1) modules
x� One XBee Arduino shield
x� One XBee Explorer board and USB cable
x� Various connecting wires
x� A 9 V battery and DC socket cable (as used in Chapter 12)
x� One breadboard

The Layout
Insert one XBee into the shield; then connect the shield to the Arduino
board. Use the small solderless breadboard to hold the TMP36 and add wires
to 5 V, GND, and A0 on the XBee shield (as with Project 8), as shown in
Figure 14-12.

Figure 14-12: Remote temperature-sensing
Arduino setup

The USB Explorer board and the other XBee will be connected to the
PC after you upload the following sketch to your Arduino board.

282 Chapter 14

The Sketch
Enter and upload the following sketch:

// Project 49 - Building a Remote Control Thermometer

char a;
float voltage=0;
float sensor=0;
float celsius=0;
float fahrenheit=0;
float photocell=0;

void setup()
{
 Serial.begin(9600);
}

void sendC()
{
 sensor=analogRead(0);
 voltage=((sensor*5000)/1024);
 voltage=voltage-500;
 celsius=voltage/10;
 fahrenheit=((celsius*1.8)+32);
 Serial.print("Temperature: ");
 Serial.print(celsius,2);
 Serial.println(" degrees C");
}

void sendF()
{
 sensor=analogRead(0);
 voltage=((sensor*5000)/1024);
 voltage=voltage-500;
 celsius=voltage/10;
 fahrenheit=((celsius*1.8)+32);
 Serial.print("Temperature: ");
 Serial.print(fahrenheit,2);
 Serial.println(" degrees F");
}

void getCommand()
X {

 Serial.flush();
 while (Serial.available() == 0)
 {
 // do nothing until data arrives from XBee
 }
 while (Serial.available() > 0)
 {
 a = Serial.read(); // read the number in the serial buffer
 }
}

Wireless Data 283

void loop()
{
 getCommand();// listen for command from PC

Y switch (a)
 {

Z case 'c':
 // send temperature in Celsius
 sendC();
 break;

[case 'f':
 // send temperature in Fahrenheit
 sendF();
 break;
 }
}

First, the sketch listens to the serial line using the function getCommand()
at X. It will loop around until it receives a character, at which point it stores
that character in variable a. Once the character has been received, it is
interpreted using the switch-case function at Y. If the letter c is received, the
function sendC() at Z calculates the temperature in Celsius, writes it to the
serial line, and then sends the temperate to the host PC via the XBees. If
the letter f is received, sendF() at [calculates the temperature in Fahrenheit
and sends it back to the PC.

Operation
Run the Terminal program, as you did earlier in this chapter, and then
send out a c or an f. The temperature should be returned in about 1 second
and should look similar to the results shown in Figure 14-13.

Figure 14-13: Results from Project 49

284 Chapter 14

Looking Ahead
This chapter shows how simple it is to control multiple Arduino systems
remotely. For example, you could control digital outputs by sending char-
acters from the PC terminal or another Arduino, or have certain charac-
ters recognized by individual Arduino boards. With the knowledge you’ve
gained so far, many more creative options are available to you.

But there’s still much more to investigate in terms of wireless data trans-
mission, so keep reading and working along as you learn to use simple
television remote controls with the Arduino in the next chapter.

15
I N F R A R E D R E M O T E C O N T R O L

In this chapter you will

x� Create and test a simple infrared receiver
x� Remotely control Arduino digital output pins
x� Add a remote control system to the motorized tank we created in

Chapter 12

As you’ll see, with the addition of an inexpensive receiver module, your
Arduino can receive the signals from an infrared remote and act upon them.

What Is Infrared?
Although most people use infrared remote controls in a variety of daily
actions, they don’t know how they work. Infrared (IR) signals are actu-
ally beams of light that operate at a wavelength that cannot be seen by the
naked eye. So when you look at the little LED poking out of a remote con-
trol and press a button, you won’t see the LED light up.

286 Chapter 15

IR remote controls contain one or more special infrared light–generating
LEDs that are used to transmit the IR signals. For example, when you press
a button on the remote, the LED turns on and off repeatedly in a pattern
that is unique for each button pressed on the remote. This signal is received
by a special IR receiver and converted to pulses of electrical current that are
then converted to data in the receiver’s electronics. If you are curious about
these patterns, you can actually view them by looking at the IR LED on a
remote through the viewfinder of a phone camera or digital camera.

Setting Up for Infrared
Before moving forward, we need to install the infrared Arduino library, so
visit https://github.com/shirriff/Arduino-IRremote/ to download the required
files and install them, as explained in “Expanding Sketches with Libraries”
on page 169.

The IR Receiver
The next step is to set up the IR receiver and test that it is working. You
can choose either an independent IR receiver (shown in Figure 15-1) or a
prewired module (shown in Figure 15-2), which is the easier route to take.

Figure 15-1: IR receiver Figure 15-2: Pre-wired IR receiver module

The independent IR receiver shown in Figure 15-1 is a Vishay TSOP4138,
available from retailers such as Newark (part number 59K0287) or element14
(part number 1040743). The bottom leg of the receiver (as shown in the fig-
ure) connects to an Arduino digital pin, the center leg to GND, and the top
leg to 5V.

Figure 15-2 shows a prewired IR module. Prewired receiver modules
are available from DFRobot and other retailers. The benefit of using these
modules is that they include connection wires and are labeled for easy
reference.

Regardless of your choice of module, in all of the following examples,
you’ll connect the D (or data line) to Arduino digital pin 11, VCC to 5V,
and GND to GND.

Infrared Remote Control 287

The Remote Control
Finally, you will need a remote control. We’ll use a Sony TV remote like the
one shown in Figure 15-3. If you don’t have access to a Sony remote, any
inexpensive universal remote control can be used after you reset it to Sony
codes. See the instructions included with your remote control to do this.

Figure 15-3: Typical Sony remote control

A Test Sketch
Now let’s make sure that everything works. After connecting your IR
receiver to the Arduino, enter and upload the sketch in Listing 15-1.

// Listing 15-1

int receiverpin = 11; // pin 1 of IR receiver to Arduino digital pin 11
X #include <IRremote.h> // use the library
Y IRrecv irrecv(receiverpin); // create instance of irrecv
Z decode_results results;

void setup()
{
 Serial.begin(9600);
 irrecv.enableIRIn(); // start the IR receiver
}

void loop()
{

[if (irrecv.decode(&results)) // have we received an IR signal?
 {

\ Serial.print(results.value, HEX); // display IR code on the Serial Monitor
 Serial.print(" ");
 irrecv.resume(); // receive the next value
 }
}

Listing 15-1: IR receiver test

This sketch is relatively simple, because most of the work is done in
the background by the IR library. At [, we check to see if a signal has

288 Chapter 15

been received from the remote control. If so, it is displayed on the Serial
Monitor in hexadecimal at \. The lines at X, Y, and Z activate the IR
library and create an instance of the infrared library function to refer to
in the rest of the sketch.

Testing the Setup
Once you’ve uploaded the sketch, open the Serial Monitor, aim the remote
at the receiver, and start pressing buttons. You should see codes displayed
on the Serial Monitor after each button press. For example, Figure 15-4
shows the results of pressing 1, 2, and 3, once each.

Figure 15-4: Results of pressing buttons after
running the code in Listing 15-1

Table 15-1 lists the codes from a basic Sony remote control that we’ll
use in upcoming sketches. However, when running Listing 15-1, notice
how each code number repeats three times. This is an idiosyncrasy of
Sony IR systems, which send the code three times for each button press.
You can ignore these repeats with some clever coding, but for now let’s skip
to remote controlling with the next project.

Table 15-1: Example Sony IR codes

Button Code Button Code

Power A90 7 610
Mute 290 8 E10
1 10 9 110
2 810 0 910
3 410 Volume up 490
4 C10 Volume down C90
5 210 Channel up 90
6 A10 Channel down 890

Infrared Remote Control 289

Project #50: Creating an IR Remote Control Arduino

This project will demonstrate how to control digital output pins using IR
remote control. This project will allow you to control digital pins 2 through
7 with the matching numerical buttons 2 through 7 on a Sony remote con-
trol. When you press a button on the remote control, the matching digital
output pin will change state to HIGH for 1 second and then return to LOW.
You’ll be able to use this project as a base or guide to add remote control
capabilities to your other projects.

The Hardware
The hardware is the same as that required for the IR test at the beginning
of this chapter, with the addition of the custom LED shield you made for
Project 28. (You could always connect LEDs, motors, or other forms of out-
put instead of this LED shield.)

The Sketch
Enter and upload the following sketch:

// Project 50 – Creating an IR Remote Control Arduino

int receiverpin = 11; // pin 1 of IR receiver to Arduino digital pin 11
#include <IRremote.h>
IRrecv irrecv(receiverpin); // create instance of irrecv
decode_results results;

void setup()
{
 irrecv.enableIRIn(); // start the receiver
 for (int z = 2 ; z < 8 ; z++) // set up digital pins
 {
 pinMode(z, OUTPUT);
 }
}

X void translateIR()
// takes action based on IR code received
// uses Sony IR codes
{
 switch(results.value)
 {

Y case 0x810: pinOn(2); break; // 2
 case 0x410: pinOn(3); break; // 3
 case 0xC10: pinOn(4); break; // 4
 case 0x210: pinOn(5); break; // 5
 case 0xA10: pinOn(6); break; // 6
 case 0x610: pinOn(7); break; // 7
 }
}

290 Chapter 15

Z void pinOn(int pin) // turns on digital pin "pin" for 1 second
{
 digitalWrite(pin, HIGH);
 delay(1000);
 digitalWrite(pin, LOW);
}

void loop()
{

[if (irrecv.decode(&results)) // have we received an IR signal?
 {
 translateIR();

\ for (int z = 0 ; z < 2 ; z++) // ignore the 2nd and 3rd repeated codes
 {
 irrecv.resume(); // receive the next value
 }
 }
}

This sketch has three major parts. First, it waits for a signal from the
remote at [. When a signal is received, the signal is tested in the function
translateIR() at X to determine which button was pressed and what action
to take.

Notice at Y how we compare the hexadecimal codes returned by
the IR library. These are the codes returned by the test conducted in
Listing 15-1. When the codes for buttons 2 through 7 are received, the
function pinOn() at Z is called, which turns on the matching digital pin
for 1 second.

As mentioned, Sony remotes send the code three times for each but-
ton press, so we use a small loop at \ to ignore the second and third codes.
Finally, note the addition of 0x in front of the hexadecimal numbers used
in the case statements at Y.

N O T E Hexadecimal numbers are base 16 and use the digits 0 through 9 and then A
through F, before moving on to the next column. For example, decimal 10 in hexa-
decimal is A, decimal 15 in hexadecimal is F, decimal 16 is 10 hexadecimal, and
so on. When using a hexadecimal number in a sketch, preface it with 0x.

Expanding the Sketch
You can expand the options or controls available for controlling your
motorized tank by testing more buttons. To do so, use Listing 15-1 to deter-
mine which button creates which code, and then add each new code to the
switch...case statement.

Infrared Remote Control 291

Project #51: Creating an IR Remote Control Tank

To show you how to integrate an IR remote control into an existing project,
we’ll add IR to the tank described for Project 40. In this project, instead of
presetting the tank’s direction and distances, the sketch will show you how
to control these actions with a simple Sony TV remote.

The Hardware
The required hardware is the same as that required for the tank you
built for Project 40, with the addition of the IR receiver module in the
method described earlier in this chapter. In the following sketch, the tank
will respond to the buttons that you press on the remote control as follows:
press 2 for forward, 8 for backward, 4 for rotate left, and 6 for rotate right.

The Sketch
After reassembling your tank and adding the IR receiver, enter and upload
the following sketch:

// Project 51 - Creating an IR Remote Control Tank

int receiverpin = 11; // pin 1 of IR receiver to Arduino digital pin 11
#include <IRremote.h>

IRrecv irrecv(receiverpin); // create instance of 'irrecv'
decode_results results;

int m1speed = 6; // digital pins for speed control
int m2speed = 5;
int m1direction = 7; // digital pins for direction control
int m2direction = 4;

void setup()
{
 pinMode(m1direction, OUTPUT);
 pinMode(m2direction, OUTPUT);
 irrecv.enableIRIn(); // start IR receiver
}

void goForward(int duration, int pwm)
{
 digitalWrite(m1direction, HIGH); // forward
 digitalWrite(m2direction, HIGH); // forward
 analogWrite(m1speed, pwm); // at selected speed
 analogWrite(m2speed, pwm);
 delay(duration); // and duration
 analogWrite(m1speed, 0); // then stop
 analogWrite(m2speed, 0);
}

292 Chapter 15

void goBackward(int duration, int pwm)
{
 digitalWrite(m1direction, LOW); // backward
 digitalWrite(m2direction, LOW); // backward
 analogWrite(m1speed, pwm); // at selected speed
 analogWrite(m2speed, pwm);
 delay(duration);
 analogWrite(m1speed, 0); // then stop
 analogWrite(m2speed, 0);
}

void rotateRight(int duration, int pwm)
{
 digitalWrite(m1direction, HIGH); // forward
 digitalWrite(m2direction, LOW); // backward
 analogWrite(m1speed, pwm); // at selected speed
 analogWrite(m2speed, pwm);
 delay(duration); // and duration
 analogWrite(m1speed, 0); // then stop
 analogWrite(m2speed, 0);
}

void rotateLeft(int duration, int pwm)
{
 digitalWrite(m1direction, LOW); // backward
 digitalWrite(m2direction, HIGH); // forward
 analogWrite(m1speed, pwm); // at selected speed
 analogWrite(m2speed, pwm);
 delay(duration); // and duration
 analogWrite(m1speed, 0); // then stop
 analogWrite(m2speed, 0);
}

// translateIR takes action based on IR code received, uses Sony IR codes
void translateIR()
{
 switch(results.value)
 {
 case 0x810: goForward(250, 255); break; // 2
 case 0xC10: rotateLeft(250, 255); break; // 4
 case 0xA10: rotateRight(250, 255); break; // 6
 case 0xE10: goBackward(250, 255); break; // 8
 }
}

Infrared Remote Control 293

void loop()
{
 if (irrecv.decode(&results)) // have we received an IR signal?
 {
 translateIR();
 for (int z = 0 ; z < 2 ; z++) // ignore the repeated codes
 {
 irrecv.resume(); // receive the next value
 }
 }
}

This sketch should look somewhat familiar to you. Basically, instead of
turning on digital pins, it calls the motor control functions that were used
in the tank from Chapter 12.

Looking Ahead
Having worked through the projects in this chapter, you should understand
how to send commands to your Arduino via an infrared remote control device.
Combined with your existing knowledge (and forthcoming projects), you
now can replace physical forms of input such as buttons with a remote control.

But the fun doesn’t stop here. In the next chapter, we’ll use Arduino to
harness something that, to the untrained eye, is fascinating and futuristic:
radio-frequency identification systems.

16
R E A D I N G R F I D T A G S

In this chapter you will

x� Learn how to implement RFID readers with your Arduino
x� Understand how to save variables in the Arduino EEPROM
x� Design the framework for an Arduino-based RFID access system

Radio-frequency identification, or RFID, is a wireless system that uses
electro magnetic fields to transfer data from one object to another, with-
out the two objects touching. You can build an Arduino that reads com-
mon RFID tags and cards to create access systems and to control digital
outputs. You may have used an RFID card before, such as an access card
that you use to unlock a door or a public transport card that you hold in
front of a reader on the bus. Figure 16-1 shows some examples of RFID
tags and cards.

296 Chapter 16

Figure 16-1: Example RFID devices

Inside RFID Devices
Inside an RFID device is a tiny integrated circuit with memory that can
be accessed by a specialized reader. Most tags don’t have a battery inside;
instead, they’re powered by energy from an electromagnetic field produced
by the RFID reader. This field is transmitted by a fine coil of wire, which
also acts as the antenna for the transmission of data between the card and
the reader. Figure 16-2 shows the antenna coil of the RFID reader that we’ll
use in this chapter.

Figure 16-2: Our RFID reader

Reading RFID Tags 297

The card reader we’ll use in this chapter is available from Seeed Studio
at http://www.seeedstudio.com/, part number ELB149C5M. It’s cheap and
easy to use, and it operates at 125 kHz; be sure to purchase RFID tags that
match that frequency, such as Seeed Studio part number RFR103B2B.

Testing the Hardware
In this section you’ll connect the RFID reader to the Arduino and then test
that it’s working with a simple sketch that reads RFID cards and sends the
data to the Serial Monitor.

The Schematic
Figure 16-3 shows the RFID module connections.

GND
VCC

RX/D0
TX/D1

ANTENNAJUMPER
U W

POWER

SIGNAL

45mm
25mm

3.0mm

25mm

2.54mm

Figure 16-3: RFID module connections

Testing the Schematic
Once the RFID reader is connected to the Arduino, you can test it by plac-
ing the black jumper across the left and center pins of the jumper section.
Then, to make the connections between the RFID reader and the Arduino,
follow these steps, using female-to-male jumper wires:

1. Connect the included coil plug to the antenna socket.
2. Connect the reader GND to the Arduino GND.
3. Connect VCC to Arduino 5V.
4. Connect RX to Arduino pin D0.
5. Connect TX to Arduino pin D1.

298 Chapter 16

N O T E When uploading sketches to the RFID-connected Arduino, be sure to remove the wire
between the RFID reader RX and Arduino pin D0. Then reconnect it after the sketch
has been uploaded successfully. This is because the D0 pin is also used by the Arduino
board to communicate and receive sketches.

The Test Sketch

Enter and upload Listing 16-1.

// Listing 16-1
int data1 = 0;

void setup()
{
 Serial.begin(9600);
}

void loop()
{
 if (Serial.available() > 0) {
 data1 = Serial.read();
 // display incoming number
 Serial.print(" ");
 Serial.print(data1, DEC);
 }
}

Listing 16-1: RFID test sketch

Check Serial Monitor

Open the Serial Monitor window and wave an RFID tag over the coil. The
results should look similar to Figure 16-4.

Figure 16-4: Example output from Listing 16-1

Notice that 14 numbers are displayed in the Serial Monitor window.
This is the RFID tag’s unique ID number, which we’ll use in future sketches
to identify the tag being read. Now record the numbers that result from
each of your tags, because you’ll need them for the next few projects.

Reading RFID Tags 299

Project #52: Creating a Simple RFID Control System

Now let’s put the RFID system to use. In this project you’ll learn how to trig-
ger an Arduino event when the correct RFID tag is read. This sketch stores
two RFID tag numbers; when one of the cards is read by the reader, it will
display Accepted in the Serial Monitor. If the wrong card is presented, then
the Serial Monitor will display Rejected. We’ll use this as a base to add RFID
controls to existing projects.

The Sketch
Enter and upload the following sketch. However, at X and Y, replace the
xs in each array with the numbers for each of the RFID tags you generated
earlier in the chapter. (We discussed arrays in Chapter 6.)

// Project 52 – Creating a Simple RFID Control System

int data1 = 0;
int ok = -1;

// use Listing 16-1 to find your tag numbers
X int tag1[14] = {x, x, x, x, x, x, x, x, x, x, x, x, x, x};
Y int tag2[14] = {x, x, x, x, x, x, x, x, x, x, x, x, x, x};

int newtag[14] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0}; // used for read comparisons

void setup()
{
 Serial.flush(); // need to flush serial buffer,
 // otherwise first read may not be correct
 Serial.begin(9600);
}

Z boolean comparetag(int aa[14], int bb[14])
{
 boolean ff = false;
 int fg = 0;
 for (int cc = 0 ; cc < 14 ; cc++)
 {
 if (aa[cc] == bb[cc])
 {
 fg++;
 }
 }
 if (fg == 14)
 {
 ff = true;
 }
 return ff;
}

300 Chapter 16

[void checkmytags() // compares each tag against the tag just read
{
 ok = 0; // this variable helps decision-making,
 // if it is 1 we have a match, zero is a read but no match,
 // -1 is no read attempt made
 if (comparetag(newtag, tag1) == true)
 {

\ ok++;
 }
 if (comparetag(newtag, tag2) == true)
 {

] ok++;
 }
}

void loop()
{
 ok = -1;
 if (Serial.available() > 0) // if a read has been attempted
 {
 // read the incoming number on serial RX
 delay(100); // needed to allow time for the data
 // to come in from the serial buffer.
 for (int z = 0 ; z < 14 ; z++) // read the rest of the tag

^ {
 data1 = Serial.read();
 newtag[z] = data1;
 }
 Serial.flush(); // stops multiple reads
 // now to match tags up

_ checkmytags();
 }

` //now do something based on tag type
 if (ok > 0) // if we had a match
 {
 Serial.println("Accepted");
 ok = -1;
 }
 else if (ok == 0) // if we didn't have a match
 {
 Serial.println("Rejected");
 ok = -1;
 }
}

How It Works
When a tag is presented to the RFID reader, it sends the tag numbers
through the serial port. We capture all 14 of these numbers and place
them in the array newtag[] at ^. Next, the tag is compared against the

Reading RFID Tags 301

two stored tag numbers at X and Y using the function checkmytags() at [
and _, with the actual comparisons of the tag arrays passed to the function
comparetag() at Z.

The comparetag() function accepts the two number arrays as parameters
and returns (in Boolean) whether the arrays are identical (true) or different
(false). If a match is made, the variable OK is set to 1 at \ and]. Finally, at `,
we have the actions to take once the tag read succeeds.

After uploading the sketch and reconnecting the wire from Arduino
D0 to the RFID reader RX (see Figure 16-3), open the Serial Monitor win-
dow and present some tags to the reader. The results should be similar to
Figure 16-5.

Figure 16-5: Results of Project 52

Storing Data in the Arduino’s Built-in EEPROM
When you define and use a variable in your Arduino sketches, the stored
data lasts only until the Arduino is reset or the power is turned off. But
what if you want to keep the values for future use, such as in the user-
changeable secret code for the numeric keypad in Chapter 9? That’s where
the EEPROM (electrically erasable read-only memory) comes in. The EEPROM
stores variables in memory inside an ATmega328 microcontroller, and the
variables aren’t lost when the power is turned off.

The EEPROM in the Arduino can store 1,024-byte variables in posi-
tions numbered from 0 to 1,023. Recall that a byte can store an integer
with a value between 0 and 255, and you begin to see why it’s perfect for
storing RFID tag numbers. To use the EEPROM in our sketches, we first
call the EEPROM library (included with the Arduino IDE) using the
following:

#include <EEPROM.h>

Then, to write a value to the EEPROM, we simply use this:

EEPROM.write(a, b);

302 Chapter 16

Here, a is the position in which the value (which falls between 0 and
1,023) will be stored, and b is the variable holding the byte of data we want
to store in the EEPROM position number a.

To retrieve data from the EEPROM, use this function:

value = EEPROM.read(position);

This takes the data stored in EEPROM position number position and
stores it in the variable value.

N O T E The EEPROM has a finite life, and it can eventually wear out! According to the
manufacturer, Atmel, it can sustain 100,000 write/erase cycles for each position.
Reads are unlimited.

Reading and Writing to the EEPROM
Here’s an example of how to read and write to the EEPROM. Enter and
upload Listing 16-2.

// Listing 16-2
#include <EEPROM.h>
int zz;

void setup()
{
 Serial.begin(9600);
 randomSeed(analogRead(0));
}

void loop()
{
 Serial.println("Writing random numbers...");
 for (int i = 0; i < 1024; i++)
 {
 zz = random(255);

X EEPROM.write(i, zz);
 }
 Serial.println();
 for (int a = 0; a < 1024; a++)
 {

Y zz = EEPROM.read(a);
 Serial.print("EEPROM position: ");
 Serial.print(a);
 Serial.print(" contains ");

Z Serial.println(zz);
 delay(25);
 }
}

Listing 16-2: EEPROM demonstration sketch

Reading RFID Tags 303

In the loop at X, a random number between 0 and 255 is stored in each
EEPROM position. The stored values are retrieved in the second loop at Y,
to be displayed in the Serial Monitor at Z.

Once the sketch has been uploaded, open the Serial Monitor and you
should see something like Figure 16-6.

Figure 16-6: Example output from Listing 16-2

Now you’re ready to create a project using the EEPROM.

Project #53: Creating an RFID Control with
“Last Action” Memory

Although Project 52 showed how to use an RFID to control something,
such as a light or electric door lock, we had to assume that nothing would
be remembered if the system were reset or the power went out. For example,
if a light was on and the power went out, then the light would be off once
the power returned. However, once the power comes back on, you want the
Arduino to remember what was happening before the power went out and
return to that state. Let’s solve that problem now.

In this project, the last action will be stored in the EEPROM (for example,
“locked” or “unlocked”). When the sketch restarts after a power failure or
an Arduino reset, the system will revert to the previous state stored in the
EEPROM.

The Sketch
Enter and upload the following sketch. Again, replace the xs in each array
at X and Y with the numbers for each of the two RFID tags as you did for
Project 52.

// Project 53 – Creating an RFID Control with "Last Action" Memory

#include <EEPROM.h>

304 Chapter 16

int data1 = 0;
int ok = -1;
int lockStatus = 0;

// use Listing 16-1 to find your tag numbers
X int tag1[14] = {x, x, x, x, x, x, x, x, x, x, x, x, x, x};
Y int tag2[14] = {x, x, x, x, x, x, x, x, x, x, x, x, x, x};

int newtag[14] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0}; // used for read comparisons

void setup()
{
 Serial.flush();
 Serial.begin(9600);
 pinMode(13, OUTPUT);

Z checkLock();
}

// comparetag compares two arrays and returns true if identical
// this is good for comparing tags
boolean comparetag(int aa[14], int bb[14])
{
 boolean ff = false;
 int fg = 0;
 for (int cc = 0; cc < 14; cc++)
 {
 if (aa[cc] == bb[cc])
 {
 fg++;
 }
 }
 if (fg == 14)
 {
 ff = true;
 }
 return ff;
}

void checkmytags()
// compares each tag against the tag just read
{
 ok = 0;
 if (comparetag(newtag, tag1) == true)
 {
 ok++;
 }
 if (comparetag(newtag, tag2) == true)
 {
 ok++;
 }
}

Reading RFID Tags 305

[void checkLock()
{
 Serial.print("System Status after restart ");
 lockStatus = EEPROM.read(0);
 if (lockStatus == 1)
 {
 Serial.println("- locked");
 digitalWrite(13, HIGH);
 }
 if (lockStatus == 0)
 {
 Serial.println("- unlocked");
 digitalWrite(13, LOW);
 }
 if ((lockStatus != 1) && (lockStatus != 0))
 {
 Serial.println("EEPROM fault - Replace Arduino hardware");
 }
}

void loop()
{
 ok = -1;
 if (Serial.available() > 0) // if a read has been attempted
 {
 // read the incoming number on serial RX
 delay(100);
 for (int z = 0; z < 14; z++) // read the rest of the tag
 {
 data1 = Serial.read();
 newtag[z] = data1;
 }
 Serial.flush(); // prevents multiple reads
 // now to match tags up
 checkmytags();
 }

\ if (ok > 0) // if we had a match
 {
 lockStatus = EEPROM.read(0);
 if (lockStatus == 1) // if locked, unlock it

] {
 Serial.println("Status - unlocked");
 digitalWrite(13, LOW);
 EEPROM.write(0, 0);
 }
 if (lockStatus == 0)

^ {
 Serial.println("Status - locked");
 digitalWrite(13, HIGH);
 EEPROM.write(0, 1);
 }

306 Chapter 16

 if ((lockStatus != 1) && (lockStatus != 0))
_ {

 Serial.println("EEPROM fault - Replace Arduino hardware");
 }
 }
 else if (ok == 0) // if we didn't have a match
 {
 Serial.println("Incorrect tag");
 ok = -1;
 }
 delay(500);
}

How It Works
This sketch is a modification of Project 52. We use the onboard LED to
simulate the status of something that we want to turn on or off every time
an acceptable RFID tag is read. After a tag has been read and matched,
the status of the lock is changed at \. We store the status of the lock in the
first position of the EEPROM. The status is represented by a number: 0 is
unlocked and 1 is locked. This status will change (from locked to unlocked
and back to locked) after every successful tag read at] or ^.

We’ve also introduced a fail-safe in case the EEPROM has worn out. If
the value returned from reading the EEPROM is not 0 or 1, we should be
notified at _. Furthermore, the status is checked when the sketch restarts
after a reset using the function checkLock() at X, Y, Z, and [, which reads
the EEPROM value, determines the last status, and then sets the lock to
that status (locked or unlocked).

Looking Ahead
Once again we have used an Arduino board to re-create simply what could
be a very complex project. You now have a base to add RFID control to your
projects to create professional-quality access systems and to control digital
outputs with the swipe of an RFID card. We’ll demonstrate this again when
we revisit RFID in Chapter 18.

17
D A T A B U S E S

In this chapter you will

x� Learn about the I2C bus
x� Understand how to use an EEPROM (electrically erasable read-only

memory) and a port expander on the I2C bus
x� Learn about the SPI bus
x� Learn how to use a digital rheostat on the SPI bus

An Arduino communicates with other devices via a data bus, a system of
connections that allow two or more devices to exchange data in an orderly
manner. A data bus can provide a connection between the Arduino and
various sensors, I/O expansion devices, and other components.

The two major buses of most importance to the Arduino are the Serial
Peripheral Interface (SPI) bus and the Inter-Integrated Circuit bus (I 2C). Many
useful sensors and external devices communicate using these buses.

308 Chapter 17

The I2C Bus
The I2C bus, also known as the Two Wire
Interface (TWI) bus, is a simple and easy
device used for data communication. Data is
transferred between devices and the Arduino
through two wires, known as SDA and SCL
(the data line and clock line, respectively).
In the case of the Arduino Uno, the SDA
pin is A4 and the SCL pin is A5, as shown in
Figure 17-1. Some newer R3 boards also have
dedicated I2C pins at the upper-left corner for
convenient access.

On the I2C bus, the Arduino is considered the master device, and each IC
out on the bus is a slave. Each slave has its own address, a hexadecimal num-
ber that allows the Arduino to address and communicate with each device.
Each device usually has a range of I2C bus addresses to choose from, which
is detailed in the manufacturer’s data sheet. The particular addresses avail-
able are determined by wiring the IC pins a certain way.

N O T E Because the Arduino runs on 5 V, your I 2C device must also operate on 5 V or be able
to tolerate it. Always confirm this by contacting the seller or manufacturer before use.

To use the I2C bus, you’ll need to use the Wire library (included with the
Arduino IDE):

#include <Wire.h>

Next, in void setup(), activate the bus with this:

Wire.begin();

Data is transmitted along the bus 1 byte at a time. To send a byte of
data from the Arduino to a device on the bus, three functions are required:

1. The first function initiates communication with the following line
of code (where address is the slave’s bus address in hexadecimal—for
example 0x50):

Wire.beginTransmission(address);

2. The second function sends 1 byte of data from the Arduino to the device
addressed by the previous function (where data is a variable containing
1 byte of data; you can send more than 1 byte, but you’ll need to use
one Wire.write() for each byte):

Wire.write(data);

SD
A

SC
L

Figure 17-1: The I 2C bus con-
nectors on the Arduino Uno

Data Buses 309

3. Finally, once you have finished sending data to a particular device, use
this to end the transmission:

Wire.endTransmission();

To request that data from an I2C device be sent to the Arduino, start
with Wire.beginTransmission(address), followed by the following (where x is the
number of bytes of data to request):

Wire.requestFrom(address,x);

Next, use the following function to store the incoming byte into a
variable:

incoming = Wire.read(); // incoming is the variable receiving the byte of data

Now finalize the transaction with Wire.endTransmission(), and we’ll put
these functions to use in the next project.

Project #54: Using an External EEPROM

In Chapter 16 we used the Arduino’s internal
EEPROM to prevent the erasure of variable
data caused by a board reset or power failure.
The Arduino’s internal EEPROM stores only
1,024 bytes of data. To store more data, you can
use external EEPROMs, as you’ll see in this project.

For our external EEPROM, we’ll use the
Microchip Technology 24LC512 EEPROM, which
can store 64KB (65,536 bytes) of data (Figure 17-2).
It’s available from retailers such as Digi-Key (part
number 24LC512-I/P-ND) and element14 (part
number 1660008).

The Hardware
Here’s what you’ll need to create this project:

x� One Microchip Technology 24LC512 EEPROM
x� One breadboard
x� Two 4.7 k: resistors
x� One 100 nF ceramic capacitor
x� Various connecting wires
x� Arduino and USB cable

Figure 17-2: Microchip
Technology’s 24LC512
EEPROM

310 Chapter 17

The Schematic
For the circuit, connect each 4.7 k: resistor between 5V and SCL and
between 5V and SDA, as shown in Figure 17-3.

24LC512

A0 +V

A1 WP

A2 SCL

0V SDA

2

1

3

4 5

6

7

8

N/C

IO REF

SCL

SDA

RST

AREF

A0

A1

A2

A3

A4

A5

3V3 5V Vin

Analog Input
D11

D10

D9

D8

D7

D6

D5

D4

D3 PWM

TX

RX

PWM

PWM

PWM

PWM

PWM

D2

D1

D13

D12

D0
Di

gi
ta

l I
np

ut
/O

ut
pu

t

Power

Arduino

GND
R2
4k7

R1
4k7

C1
100nF

Figure 17-3: Schematic for Project 54

The bus address for the 24LC512 EEPROM IC is partially determined
by the way it is wired into the circuit. The last 3 bits of the bus address are
determined by the status of pins A2, A1, and A0. When these pins are con-
nected to GND, their values are 0; when they are connected to 5V, their
values are 1.

The first 4 bits are preset as 1010. Therefore, in our circuit, the bus
address is represented as 1010000 in binary, which is 0x50 in hexadecimal.
This means that we can use 0x50 as the bus address in the sketch.

Data Buses 311

The Sketch
Although our external EEPROM can store up to 64KB of data, our sketch
is intended to demonstrate just a bit of its use, so we’ll store and retrieve
bytes only in the EEPROM’s first 20 memory positions.

Enter and upload the following sketch:

// Project 54 - Using an External EEPROM
X #include <Wire.h>

#define chip1 0x50

unsigned int pointer;
byte d=0;

void setup()
{

Y Serial.begin(9600);
 Wire.begin();
}

void writeData(int device, unsigned int address, byte data)
// writes a byte of data 'data' to the EEPROM at I2C address 'device'
// in memory location 'address'
{

Z Wire.beginTransmission(device);
 Wire.write((byte)(address >> 8)); // left part of pointer address
 Wire.write((byte)(address & 0xFF)); // and the right
 Wire.write(data);
 Wire.endTransmission();
 delay(10);
}

[byte readData(int device, unsigned int address)
// reads a byte of data from memory location 'address'
// in chip at I2C address 'device'
{
 byte result; // returned value
 Wire.beginTransmission(device);
 Wire.write((byte)(address >> 8)); // left part of pointer address
 Wire.write((byte)(address & 0xFF)); // and the right
 Wire.endTransmission();

\ Wire.requestFrom(device,1);
 result = Wire.read();
 return result; // and return it as a result of the function readData
}

void loop()
{
 Serial.println("Writing data...");
 for (int a=0; a<20; a++)
 {
 writeData(chip1,a,a);
 }

312 Chapter 17

 Serial.println("Reading data...");
 for (int a=0; a<20; a++)
 {
 Serial.print("EEPROM position ");
 Serial.print(a);
 Serial.print(" holds ");
 d=readData(chip1,a);
 Serial.println(d, DEC);
 }
}

Let’s walk through the sketch. At X, we activate the library and define
the I2C bus address for the EEPROM as chip1. At Y, we start the Serial
Monitor and then the I2C bus. The two custom functions writeData() and
readData() are included to save you time and give you some reusable code for
future work with this EEPROM IC. We’ll use them to write and read data,
respectively, from the EEPROM.

The function writeData() at Z initiates transmission with the EEPROM,
sends the address of where to store the byte of data in the EEPROM using
the next two Wire.write() functions, sends a byte of data to be written, and
then ends transmission.

The function readData() at [operates the I2C bus in the same manner
as writeData(), but instead of sending a byte of data to the EEPROM, it uses
Wire.requestFrom() to read the data at \. Finally, the byte of data sent from
the EEPROM is received into the variable result and becomes the return
value for the function.

The Result
In void loop() the sketch loops 20 times and writes a value to the EEPROM.
Then it loops again, retrieving the values and displaying them in the Serial
Monitor, as shown in Figure 17-4.

Figure 17-4: Results of Project 54

Data Buses 313

Project #55: Using a Port Expander IC

A port expander is another useful IC that is controlled via I2C. It’s designed
to offer more digital outputs. In this project, we’ll use the Microchip
Technology MCP23017 16-bit port expander IC (Figure 17-5), which has
16 digital outputs to add to your Arduino. It is available from retailers such
as Newark (part number 31K2959) or element14 (part number 1332088).

Figure 17-5: Microchip Technology’s MCP23017 port expander IC

In this project, we’ll connect the MCP23017 to an Arduino and demon-
strate how to control the 16 port expander outputs with the Arduino. Each
of the port expander’s outputs can be treated like a regular Arduino digital
output.

The Hardware
Here’s what you’ll need to create this project:

x� Arduino and USB cable
x� One breadboard
x� Various connecting wires
x� One Microchip Technology MCP20317 port expander IC
x� Two 4.7 k: resistors
x� (Optional) An equal number of 560 : resistors and LEDs

The Schematic
Figure 17-6 shows the basic schematic for an MCP23017. As with the EEPROM
from Project 54, we can set the I2C bus address by using a specific wiring
order. With the MCP23017, we connected pins 15 through 17 to GND to set
the address to 0x20.

When you’re working with the MCP23017, it helps to have the pin-
out diagram from the IC’s data sheet, as shown in Figure 17-7. Note that
the 16 outputs are divided into two banks: GPA7 through GPA0 on the
right side and GPB0 through GPB7 on the left. We’ll connect LEDs via
560 : resistors from some or all of the outputs to demonstrate when the
outputs are being activated.

314 Chapter 17

MCP23017
128

227

326

425

524

623

722

821

920

1019

1118

1217

1316

1415

N/C

IO REF

SCL

SDA

RST

AREF

A0

A1

A2

A3

A4

A5

3V3 5V Vin

Analog Input

D11

D10

D9

D8

D7

D6

D5

D4

D3 PWM

TX

RX

PWM

PWM

PWM

PWM

PWM

D2

D1

D13

D12

D0

Di
gi

ta
l I

np
ut

/O
ut

pu
t

Power

Arduino

GND

5V

R2
4k7

R1
4k7

Figure 17-6: Basic schematic for Project 55

Figure 17-7: Pinout diagram for MCP23017

The Sketch
Enter and upload the following sketch:

// Project 55 - Using a Port Expander IC

#include "Wire.h"
#define mcp23017 0x20

Data Buses 315

void setup()
{
 Wire.begin(); // activate I2C bus

X // setup MCP23017
 // set I/O pins to outputs
 Wire.beginTransmission(mcp23017);
 Wire.write(0x00); // IODIRA register
 Wire.write(0x00); // set all of bank A to outputs
 Wire.write(0x00); // set all of bank B to outputs

Y Wire.endTransmission();
}

void loop()
{
 Wire.beginTransmission(mcp23017);
 Wire.write(0x12);

Z Wire.write(255); // bank A
[Wire.write(255); // bank B

 Wire.endTransmission();
 delay(1000);

 Wire.beginTransmission(mcp23017);
 Wire.write(0x12);
 Wire.write(0); // bank A
 Wire.write(0); // bank B
 Wire.endTransmission();
 delay(1000);
}

To use the MCP23017, we need the lines listed in void setup() from X
through Y. To turn on and off the outputs on each bank, we send 1 byte
representing each bank in order; that is, we send a value for bank GPA0
through GPA7 and then a value for GPB0 through GPB7.

When setting individual pins, you can think of each bank as a binary
number (as explained in “A Quick Course in Binary” on page 116). Thus,
to turn on pins 7 through 4, you would send the number 11110000 in binary
(240 in decimal), inserted into the Wire.write() function shown at Z for
bank GPA0 through GPA7 or [for bank GPB0 through GPB7.

Hundreds of devices use the I2C bus for communication. Now that you
know the basics of how to use these buses, you can use any of them with an
Arduino board.

The SPI Bus
The SPI bus differs from the I2C bus in that it can be used to send data
to and receive data from a device simultaneously and at different speeds,
depending on the microcontroller used. Communication, however, is also
master-slave : The Arduino acts as the master and determines which device
(the slave) it will communicate with at one time.

316 Chapter 17

Pin Connections
Each SPI device uses four pins to commu-
nicate with a master: MOSI (Master-Out,
Slave-In), MISO (Master-In, Slave-Out), SCK
(clock), and SS or CS (Slave Select or Chip
Select). These SPI pins are connected to the
Arduino as shown in Figure 17-8.

A typical single Arduino-to-SPI device
 connection is shown in Figure 17-9. Arduino
pins D11 through D13 are reserved for SPI,
but the SS pin can use any other digital pin
(often D10 is used because it’s next to the
SPI pins).

SCK
MOSI
MISO
SSD10

D11
D12

D13

SPI
Master Device

(e.g., Arduino Uno)

SPI
Slave Device

Figure 17-9: Typical Arduino-to-SPI device connection

N O T E As with I 2C devices, your SPI device must either operate on 5 V or tolerate it since
the Arduino runs on 5 V. Be sure to check this out with the seller or manufacturer
before use.

Implementing the SPI
Now let’s examine how to implement the SPI bus in a sketch. Before doing
this, however, we’ll run through the functions used. First is the SPI library
(included with the Arduino IDE software):

#include "SPI.h"

Next, you need to choose a pin to be used for SS and set it as a digital
output in void setup. Because we’re using only one SPI device in our example,
we’ll use D10 and set it up HIGH first, because most SPI devices have an “active
low” SS pin:

pinMode(10, OUTPUT);
digitalWrite(10, HIGH);

SC
K

M
IS

O

SSM
O

SI

Figure 17-8: SPI pins on an
Arduino Uno

Data Buses 317

Here is the function to activate the SPI bus:

SPI.begin();

Finally, we need to tell the sketch which way to send and receive data.
Some SPI devices require that their data be sent with the Most Significant
Bit (MSB) first, and some want the MSB last. (Again, see “A Quick Course
in Binary” on page 116 for more on MSB.) Therefore, in void setup we use
the following function after SPI.begin:

SPI.setBitOrder(order);

Here, order is either MSBFIRST or MSBLAST.

Sending Data to an SPI Device
To send data to an SPI device, we first set the SS pin to LOW, which tells the
SPI device that the master (the Arduino) wants to communicate with it.
Next, we send bytes of data to the device with the following line, as often
as necessary—that is, you use this once for each byte you are sending:

SPI.transfer(byte);

After you’ve finished communicating with the device, set the SS pin to
HIGH to tell the device that the Arduino has finished communicating with it.

Each SPI device requires a separate SS pin. For example, if you had two
SPI devices, the second SPI device’s SS pin could be D9 and connected to
the Arduino as shown in Figure 17-10.

SCK
MOSI
MISO
SSD10

D11
D12

D13

SPI
Master Device

(e.g., Arduino Uno)

SPI
Slave Device #2

SPI
Slave Device #1

D9

Figure 17-10: Two SPI devices connected to one Arduino

When communicating with the second slave device, you would use the
D9 (instead of the D10) SS pin before and after communication.

Project 56 demonstrates using the SPI bus with a digital rheostat.

318 Chapter 17

Project #56: Using a Digital Rheostat

In simple terms, a rheostat device is similar to the potentiometers we exam-
ined in Chapter 4, except the rheostat has two pins: one for the wiper and
one for the return current. In this project, you’ll use a digital rheostat to set
the resistance in the sketch instead of physically turning a potentiometer
knob or shaft yourself. Rheostats are often the basis of volume controls
in audio equipment that use buttons rather than dials. The tolerance of a
rheostat is much larger than that of a normal fixed-value resistor—in some
cases, around 20 percent larger.

For Project 56, we will use the Microchip
Technology MCP4162 shown in Figure 17-11. The
MCP4162 is available in various resistance values;
this example uses the 10 k: version. It is available
from retailers such as Newark (part number
77M2766) and element14 (part number 1840698).
The resistance can be adjusted in 255 steps; each
step has a resistance of around 40 :. To select
a particular step, we send 2 bytes of data to a
command byte (which is 0) and the value byte
(which is between 0 and 255). The MCP4162
uses nonvolatile memory, so once the power is
disconnected and later connected, the last value
selected is still in effect.

We’ll control the brightness of an LED using
the rheostat.

The Hardware
Here’s what you’ll need to create this project:

x� Arduino and USB cable
x� One breadboard
x� Various connecting wires
x� One Microchip Technology MCP4162 digital rheostat
x� One 560 : resistor
x� One LED

The Schematic
Figure 17-12 shows the schematic. The pin numbering on the MCP4162
starts at the top left of the package. Pin 1 is indicated by the indented dot
to the left of the Microchip logo on the IC (see Figure 17-11).

Figure 17-11: Microchip
Technology’s MCP4162
digital rheostat

Data Buses 319

N/C

IO REF

SCL

SDA

RST

AREF

A0

A1

A2

A3

A4

A5

3V3 5V Vin

Analog Input

D11

D10

D9

D8

D7

D6

D5

D4

D3 PWM

TX

RX

PWM

PWM

PWM

PWM

PWM

D2

D1

D13

D12

D0

Di
gi

ta
l I

np
ut

/O
ut

pu
t

Power

Arduino

GND

M
C

P4
16

2

C
S

V dd

SC
K

SD
I

P0
B

V ss
P0

W

21 3 4
5678

SD
O

R1
560Ω

LED1

Figure 17-12: Schematic for Project 56

The Sketch
Enter and upload the following sketch:

// Project 56 - Using a Digital Rheostat

X #include "SPI.h" // necessary library
int ss=10; // using digital pin 10 for SPI slave select
int del=200; // used for delaying the steps between LED brightness values

void setup()
{

Y SPI.begin();
 pinMode(ss, OUTPUT); // we use this for the SS pin
 digitalWrite(ss, HIGH); // the SS pin is active low, so set it up high first

320 Chapter 17

Z SPI.setBitOrder(MSBFIRST);
 // our MCP4162 requires data to be sent MSB (most significant byte) first

}

[void setValue(int value)
{
 digitalWrite(ss, LOW);
 SPI.transfer(0); // send the command byte
 SPI.transfer(value); // send the value (0 to 255)
 digitalWrite(ss, HIGH);
}

void loop()
{

\ for (int a=0; a<256; a++)
 {
 setValue(a);
 delay(del);
 }

] for (int a=255; a>=0; a--)
 {
 setValue(a);
 delay(del);
 }
}

Let’s walk through the code. First, we set up the SPI bus at X and Y.
At Z, we set the byte direction to suit the MPC4162. To make setting the
resistance easier, we use the custom function at [, which accepts the resis-
tance step (0 through 255) and passes it to the MCP4162. Finally, the sketch
uses two loops to move the rheostat through all the stages, from zero to the
maximum at \ and then back to zero at]. This last piece should make the
LED increase and decrease in brightness, fading up and down for as long as
the sketch is running.

Looking Ahead
In this chapter you learned about and experimented with two important
Arduino communication methods. Now you’re ready to interface your
Arduino with a huge variety of sensors, more advanced components, and
other items as they become available on the market. One of the most popu-
lar components today is a real-time clock IC that allows your projects to
keep and work with time—and that’s the topic of Chapter 18. So let’s go!

18
R E A L - T I M E C L O C K S

In this chapter you will

x� Set and retrieve the time and date from a real-time clock module
x� Discover new ways to connect devices to an Arduino
x� Create a digital clock
x� Build an employee RFID time clock

A real-time clock (RTC) IC module is a small timekeeping device that
opens all sorts of possibilities for Arduino projects. Once set with the current
time and date, an RTC provides accurate time and date data on request.

You’ll find many different RTC ICs on the market, some more accurate
than others. In this chapter, we’ll use the Maxim DS3232; it doesn’t require
any external circuitry other than a backup battery, and it’s incredibly accu-
rate and quite robust in module form. The DS3232 is available as a break-
out board from various retailers, including the version from Freetronics
(http://www.freetronics.com/rtc/) that is shown in Figure 18-1.

322 Chapter 18

Figure 18-1: Real-time clock IC module

Connecting the RTC Module
It’s easy to connect the RTC module to an Arduino, because it uses the
I2C bus (discussed in Chapter 17). All you need are four wires: GND and
VCC go to Arduino GND and 5V, respectively; SDA and SCL go to Arduino
A4 and A5, respectively. Due to the module’s design, no extra pull-up resis-
tors are required on the I2C bus, unless you have a long cable between the
module and your Arduino. If so, solder across the pads on the underside
marked “Pullups: SDA and SCL” to enable the built-in I2C pull-up resistors.

For convenience, consider mounting the module on a blank ProtoShield
so it can be integrated easily with other hardware for other projects. And
make sure you have the backup battery installed, or your time data will be
lost when you turn off the project!

Project #57: Adding and Displaying Time and Date with an RTC

In this project you’ll learn how to set the time and date on the RTC and
then retrieve and display it in the Serial Monitor. Time and date informa-
tion can be useful for various types of projects, such as temperature loggers
and alarm clocks.

The Hardware
Here’s what you’ll need to create this project:

x� Arduino and USB cable
x� Various connecting wires
x� Maxim DS3232 RTC module

Real-time Clocks 323

The Sketch
Connect the module to the Arduino as described earlier in the chapter, and
then enter but do not upload the following sketch:

// Project 57 - Adding and Displaying Time and Date with an RTC
X #include "Wire.h"

#define DS3232_I2C_ADDRESS 0x68

// Convert normal decimal numbers to binary coded decimal
Y byte decToBcd(byte val)

{
 return((val/10*16) + (val%10));
}

// Convert binary coded decimal to normal decimal numbers
byte bcdToDec(byte val)
{
 return((val/16*10) + (val%16));
}

void setup()
{
 Wire.begin();
 Serial.begin(9600);

 // set the initial time here:
 // DS3232 seconds, minutes, hours, day, date, month, year

Z setDS3232time(0, 56, 23, 3, 30, 10, 12);

}

[void setDS3232time(byte second, byte minute, byte hour, byte dayOfWeek, byte
dayOfMonth, byte month, byte year)
{
 // sets time and date data to DS3232
 Wire.beginTransmission(DS3232_I2C_ADDRESS);
 Wire.write(0); // set next input to start at the seconds register
 Wire.write(decToBcd(second)); // set seconds
 Wire.write(decToBcd(minute)); // set minutes
 Wire.write(decToBcd(hour)); // set hours
 Wire.write(decToBcd(dayOfWeek)); // set day of week (1=Sunday, 7=Saturday)
 Wire.write(decToBcd(dayOfMonth)); // set date (1 to 31)
 Wire.write(decToBcd(month)); // set month
 Wire.write(decToBcd(year)); // set year (0 to 99)
 Wire.endTransmission();
}

\ void readDS3232time(byte *second,
byte *minute,
byte *hour,

324 Chapter 18

byte *dayOfWeek,
byte *dayOfMonth,
byte *month,
byte *year)
{
 Wire.beginTransmission(DS3232_I2C_ADDRESS);
 Wire.write(0); // set DS3232 register pointer to 00h
 Wire.endTransmission();
 Wire.requestFrom(DS3232_I2C_ADDRESS, 7);

 // request seven bytes of data from DS3232 starting from register 00h
 *second = bcdToDec(Wire.read() & 0x7f);
 *minute = bcdToDec(Wire.read());
 *hour = bcdToDec(Wire.read() & 0x3f);
 *dayOfWeek = bcdToDec(Wire.read());
 *dayOfMonth = bcdToDec(Wire.read());
 *month = bcdToDec(Wire.read());
 *year = bcdToDec(Wire.read());
}

void displayTime()
{
 byte second, minute, hour, dayOfWeek, dayOfMonth, month, year;

 // retrieve data from DS3232

] readDS3232time(&second, &minute, &hour, &dayOfWeek, &dayOfMonth, &month,
 &year);

 // send it to the serial monitor
 Serial.print(hour, DEC);
 // convert the byte variable to a decimal number when displayed
 Serial.print(":");
 if (minute<10)
 {
 Serial.print("0");
 }
 Serial.print(minute, DEC);
 Serial.print(":");
 if (second<10)
 {
 Serial.print("0");
 }
 Serial.print(second, DEC);
 Serial.print(" ");
 Serial.print(dayOfMonth, DEC);
 Serial.print("/");
 Serial.print(month, DEC);
 Serial.print("/");
 Serial.print(year, DEC);
 Serial.print(" Day of week: ");
 switch(dayOfWeek){
 case 1:
 Serial.println("Sunday");
 break;

Real-time Clocks 325

 case 2:
 Serial.println("Monday");
 break;
 case 3:
 Serial.println("Tuesday");
 break;
 case 4:
 Serial.println("Wednesday");
 break;
 case 5:
 Serial.println("Thursday");
 break;
 case 6:
 Serial.println("Friday");
 break;
 case 7:
 Serial.println("Saturday");
 break;
 }
}

void loop()
{
 displayTime(); // display the real-time clock data on the Serial Monitor,
 delay(1000); // every second
}

How It Works
This sketch might look complex, but it’s really not so difficult. At X, we
import the I2C library and set the bus address of the RTC in the sketch
as 0x68. At Y, two custom functions convert decimal numbers to binary-
coded decimal (BCD) values and return those values. We perform these
conversions because the DS3232 stores values in BCD format.

At Z, we use the function setDS3232time to pass the time and date infor-
mation to the RTC IC like this:

setDS3232time(second, minute, hour, dayOfWeek, dayOfMonth, month, year)

To use this function, simply insert the required data into the various
parameters. The dayOfWeek parameter is a number between 1 and 7 repre-
senting Sunday through Saturday, respectively. The information for year
is only two digits—for example, you’d use 13 for the year 2013. (The 20 is
assumed.) You can insert either fixed values (as in this sketch) or byte vari-
ables that contain the parameters.

Thus, to set the time in the RTC, we enter the current date and time
values into the setDS3232time function at [. Now you can upload the sketch.
Having done that once, we comment out the function by placing // in front
of the setDS3232time function at [, and then we re-upload the sketch to ensure
that the time isn’t set to the original value every time the sketch starts!

326 Chapter 18

Finally, the function readDS3232time at \ reads the time and date from
the RTC and inserts the data into byte variables. This is used at] inside the
function displayTime, which simply retrieves the data and displays it in the
Serial Monitor by printing the contents of the time variables.

Now upload your sketch and open the Serial Monitor. The results should
look similar to those shown in Figure 18-2.

Figure 18-2: Results from Project 57

You can use the contents of the sketch for Project 57 as a basis for other
time-related projects. The functions decToBcd, bcdToDec, readDS3232time, and
setDS3232time can be inserted and thus reused in future projects. That’s one
of the benefits of using the Arduino platform: Once you write a useful pro-
cedure, it can often be reused later with little or no modification.

Project #58: Creating a Simple Digital Clock

In this project we’ll use the functions from Project 57 to display the time
and date on a standard character LCD, similar to the one used in the GPS
receiver in Project 44.

The Hardware
Here’s what you’ll need to create this project:

x� Arduino and USB cable
x� Various connecting wires
x� One breadboard
x� ProtoScrewShield or similar product
x� LCD module or Freetronics LCD shield
x� Real-time clock module (shown earlier in the chapter)

First, re-create the hardware used in Project 57. If you connected the
RTC module with wires into the Arduino, use a ProtoScrewShield instead
to interface with the RTC. Then insert your LCD shield on top of the other
shields.

Real-time Clocks 327

PROTOSCR E W SHIE L D

Over time, your projects may consist of several Arduino shields and external
devices, all connected by a mess of wires. A great way to control the mess
is the ProtoScrewShield for Arduino from Wingshield Industries (http://
wingshieldindustries.com/), as shown in Figure 18-3.

Figure 18-3: The ProtoScrewShield in use

This component comprises two parts, one for each row of sockets on the
Arduino. Once you insert the component into the Arduino, you can continue
using shields. However, you can also connect wires from external devices such
as sensors or servos directly to the Arduino I/O pins via the screw terminals on
the ProtoScrewShield.

The Sketch
Enter but do not upload the following sketch:

// Project 58 - Creating a Simple Digital Clock

#include "Wire.h"
#define DS3232_I2C_ADDRESS 0x68

X #include <LiquidCrystal.h>
LiquidCrystal lcd(8, 9, 4, 5, 6, 7);

// Convert normal decimal numbers to binary coded decimal
byte decToBcd(byte val)
{
 return((val/10*16) + (val%10));
}

328 Chapter 18

// Convert binary coded decimal to normal decimal numbers
byte bcdToDec(byte val)
{
 return((val/16*10) + (val%16));
}

void setup()
{
 Wire.begin();

Y lcd.begin(16, 2);
 // set the initial time here:
 // DS3232 seconds, minutes, hours, day, date, month, year

Z //setDS3232time(0, 27, 0, 5, 15, 11, 12);
}

void setDS3232time(byte second, byte minute, byte hour, byte dayOfWeek, byte
dayOfMonth, byte month, byte year)
{
 // sets time and date data to DS3232
 Wire.beginTransmission(DS3232_I2C_ADDRESS);
 Wire.write(0); // set next input to start at the seconds register
 Wire.write(decToBcd(second)); // set seconds
 Wire.write(decToBcd(minute)); // set minutes
 Wire.write(decToBcd(hour)); // set hours
 Wire.write(decToBcd(dayOfWeek)); // set day of week (1=Sunday, 7=Saturday)
 Wire.write(decToBcd(dayOfMonth)); // set date (1 to 31)
 Wire.write(decToBcd(month)); // set month
 Wire.write(decToBcd(year)); // set year (0 to 99)
 Wire.endTransmission();
}

void readDS3232time(byte *second,
byte *minute,
byte *hour,
byte *dayOfWeek,
byte *dayOfMonth,
byte *month,
byte *year)
{
 Wire.beginTransmission(DS3232_I2C_ADDRESS);
 Wire.write(0); // set DS3232 register pointer to 00h
 Wire.endTransmission();
 Wire.requestFrom(DS3232_I2C_ADDRESS, 7);

 // request seven bytes of data from DS3232 starting from register 00h
 *second = bcdToDec(Wire.read() & 0x7f);
 *minute = bcdToDec(Wire.read());
 *hour = bcdToDec(Wire.read() & 0x3f);
 *dayOfWeek = bcdToDec(Wire.read());
 *dayOfMonth = bcdToDec(Wire.read());
 *month = bcdToDec(Wire.read());
 *year = bcdToDec(Wire.read());
}

Real-time Clocks 329

void displayTime()
{
 byte second, minute, hour, dayOfWeek, dayOfMonth, month, year;

// retrieve data from DS3232
 readDS3232time(&second, &minute, &hour, &dayOfWeek, &dayOfMonth, &month,
 &year);

 // send the data to the LCD shield
 lcd.clear();
 lcd.setCursor(4,0);
 lcd.print(hour, DEC);
 lcd.print(":");
 if (minute<10)
 {
 lcd.print("0");
 }
 lcd.print(minute, DEC);
 lcd.print(":");
 if (second<10)
 {
 lcd.print("0");
 }
 lcd.print(second, DEC);

 lcd.setCursor(0,1);
 switch(dayOfWeek){
 case 1:
 lcd.print("Sun");
 break;
 case 2:
 lcd.print("Mon");
 break;
 case 3:
 lcd.print("Tue");
 break;
 case 4:
 lcd.print("Wed");
 break;
 case 5:
 lcd.print("Thu");
 break;
 case 6:
 lcd.print("Fri");
 break;
 case 7:
 lcd.print("Sat");
 break;
 }
 lcd.print(" ");
 lcd.print(dayOfMonth, DEC);
 lcd.print("/");
 lcd.print(month, DEC);

330 Chapter 18

 lcd.print("/");
 lcd.print(year, DEC);
}

void loop()
{
 displayTime(); // display the real-time clock time on the LCD,
 delay(1000); // every second
}

How It Works and Results
The operation of this sketch is similar to that of Project 57, except in this
case, we’ve altered the function displayTime to send time and date data to
the LCD instead of to the Serial Monitor, and we’ve added the setup lines
required for the LCD at X and Y. (For a refresher on using the LCD mod-
ule, see Chapter 7.) Don’t forget to upload the sketch first with the time and
date data entered at Z, and then re-upload the sketch with that point com-
mented out. After uploading the sketch, your results should be similar to
those shown in Figure 18-4.

Figure 18-4: Display from Project 58

Now that you’ve worked through Projects 57 and 58, you should have a
sense of how to read and write data to and from the RTC IC in your sketches.
Now let’s use what you’ve learned so far to create something really useful.

Project #59: Creating an RFID Time-Clock System

In this project we’ll create a time-clock system. You’ll see how Arduino
shields can work together and how the ProtoScrewShield helps you intro-
duce electronic parts that aren’t mounted on a shield. This system can be
used by two people who are assigned an RFID card or tag that they’ll swipe
over an RFID reader when they enter or leave an area (such as the work-
place or a home). The time and card details will be recorded to a microSD
card for later analysis.

We covered logging data to a microSD card in Chapter 13, to the RFID
in Chapter 16, and to the RTC earlier in this chapter. Now we’ll put the
pieces together.

Real-time Clocks 331

The Hardware
Here’s what you’ll need to create this project:

x� Arduino and USB cable
x� Various connecting wires
x� Real-time clock module (shown earlier in the chapter)
x� LCD module or Freetronics LCD shield
x� MicroSD card shield and card (from Chapter 13)
x� ProtoScrewShield or similar product
x� RFID reader module and two tags (from Chapter 16)

To assemble the system, start with the Arduino Uno at the bottom, and
then add your ProtoScrewShield, the microSD card shield, and the LCD
shield on the top. Connect the RFID reader as you did in Chapter 16, and
connect the RTC module as described earlier in this chapter. The assembly
should look similar to that shown in Figure 18-5.

Figure 18-5: The time-clock assembly

The Sketch
Now enter and upload the following sketch. Remember that when you’re
uploading sketches to an RFID-connected Arduino, you need to ensure that
you remove the wire between the RFID reader RX and Arduino pin D0, and
then reconnect it once the sketch has been uploaded successfully.

332 Chapter 18

// Project 59 - Creating an RFID Time-Clock System

X #include "Wire.h" // for RTC
#define DS3232_I2C_ADDRESS 0x68

Y #include "SD.h" // for SD card

#include <LiquidCrystal.h>
LiquidCrystal lcd(8, 9, 4, 5, 6, 7);
int data1 = 0;

Z // Use Listing 16-1 to find your tag numbers
int Mary[14] = {
 2, 52, 48, 48, 48, 56, 54, 67, 54, 54, 66, 54, 66, 3};
int John[14] = {
 2, 52, 48, 48, 48, 56, 54, 66, 49, 52, 70, 51, 56, 3};
int newtag[14] = {
 0,0,0,0,0,0,0,0,0,0,0,0,0,0}; // used for read comparisons

// Convert normal decimal numbers to binary coded decimal
byte decToBcd(byte val)
{
 return((val/10*16) + (val%10));
}

// Convert binary coded decimal to normal decimal numbers
byte bcdToDec(byte val)
{
 return((val/16*10) + (val%16));
}

void setDS3232time(byte second, byte minute, byte hour, byte dayOfWeek, byte
dayOfMonth, byte month, byte year)
{
 // Sets time and date data to DS3232
 Wire.beginTransmission(DS3232_I2C_ADDRESS);
 Wire.write(0); // set next input to start at the seconds register
 Wire.write(decToBcd(second)); // set seconds
 Wire.write(decToBcd(minute)); // set minutes
 Wire.write(decToBcd(hour)); // set hours
 Wire.write(decToBcd(dayOfWeek)); // set day of week (1=Sunday, 7=Saturday)
 Wire.write(decToBcd(dayOfMonth)); // set date (1 to 31)
 Wire.write(decToBcd(month)); // set month
 Wire.write(decToBcd(year)); // set year (0 to 99)
 Wire.endTransmission();
}

void readDS3232time(byte *second,
byte *minute,
byte *hour,
byte *dayOfWeek,
byte *dayOfMonth,
byte *month,
byte *year)

Real-time Clocks 333

{
 Wire.beginTransmission(DS3232_I2C_ADDRESS);
 Wire.write(0); // set DS3232 register pointer to 00h
 Wire.endTransmission();
 Wire.requestFrom(DS3232_I2C_ADDRESS, 7);

 // Request seven bytes of data from DS3232 starting from register 00h
 *second = bcdToDec(Wire.read() & 0x7f);
 *minute = bcdToDec(Wire.read());
 *hour = bcdToDec(Wire.read() & 0x3f);
 *dayOfWeek = bcdToDec(Wire.read());
 *dayOfMonth = bcdToDec(Wire.read());
 *month = bcdToDec(Wire.read());
 *year = bcdToDec(Wire.read());
}

void setup()
{
 Serial.flush(); // need to flush serial buffer
 Serial.begin(9600);
 Wire.begin();
 lcd.begin(16, 2);
 // set the initial time here:
 // DS3232 seconds, minutes, hours, day, date, month, year
 //setDS3232time(0, 27, 0, 5, 15, 11, 12);

 // Check that the microSD card exists and can be used

[if (!SD.begin(8))
 {
 lcd.print("uSD card failure");
 // stop the sketch
 return;
 }
 lcd.print("uSD card OK");
 delay(1000);
 lcd.clear();
}

// Compares two arrays and returns true if identical.
// This is good for comparing tags.
boolean comparetag(int aa[14], int bb[14])
{
 boolean ff=false;
 int fg=0;
 for (int cc=0; cc<14; cc++)
 {
 if (aa[cc]==bb[cc])
 {
 fg++;
 }
 }
 if (fg==14)
 {
 ff=true; // all 14 elements in the array match each other
 }

334 Chapter 18

 return ff;
}

void wipeNewTag()
{
 for (int i=0; i<=14; i++)
 {
 newtag[i]=0;
 }
}

void loop()
{
 byte second, minute, hour, dayOfWeek, dayOfMonth, month, year;

 if (Serial.available() > 0) // if a read has been attempted
 {
 // Read the incoming number on serial RX
 delay(100); // Allow time for the data to come in from the serial buffer
 for (int z=0; z<14; z++) // read the rest of the tag
 {
 data1=Serial.read();
 newtag[z]=data1;
 }
 Serial.flush(); // stops multiple reads
 // retrieve data from DS3232
 readDS3232time(&second, &minute, &hour, &dayOfWeek, &dayOfMonth, &month,
 &year);
 }

 //now do something based on the tag type
\ if (comparetag(newtag, Mary) == true)

 {
 lcd.print("Hello Mary ");
 File dataFile = SD.open("DATA.TXT", FILE_WRITE);
 if (dataFile)
 {
 dataFile.print("Mary ");
 dataFile.print(hour);
 dataFile.print(":");
 if (minute<10) { dataFile.print("0"); }
 dataFile.print(minute);
 dataFile.print(":");
 if (second<10) { dataFile.print("0"); }
 dataFile.print(second);
 dataFile.print(" ");
 dataFile.print(dayOfMonth);
 dataFile.print("/");
 dataFile.print(month);
 dataFile.print("/");
 dataFile.print(year);
 dataFile.println();
 dataFile.close();
 }

Real-time Clocks 335

 delay(1000);
 lcd.clear();
 wipeNewTag();
 }

 if (comparetag(newtag, John)==true)
 {
 lcd.print("Hello John ");
 File dataFile = SD.open("DATA.TXT", FILE_WRITE);
 if (dataFile)
 {
 dataFile.print("John ");
 dataFile.print(hour);
 dataFile.print(":");
 if (minute<10) { dataFile.print("0"); }
 dataFile.print(minute);
 dataFile.print(":");
 if (second<10) { dataFile.print("0"); }
 dataFile.print(second);
 dataFile.print(" ");
 dataFile.print(dayOfMonth);
 dataFile.print("/");
 dataFile.print(month);
 dataFile.print("/");
 dataFile.print(year);
 dataFile.println();
 dataFile.close();
 }
 delay(1000);
 lcd.clear();
 wipeNewTag();
 }
}

How It Works
In this sketch, the system first waits for an RFID card to be presented to the
reader. If the RFID card is recognized, then the card owner’s name, the
time, and the date are appended to a text file stored on the microSD card.

At X are the functions required for the I2C bus and the real-time clock,
and at Y is the line required to set up the microSD card shield. At [, we
check and report on the status of the microSD card. At \, the card just
read is compared against the stored card number for one of two people—
in this case, John and Mary. If there is a match, the data is written to the
microSD card. With some modification, you could add more cards to the
system simply by adding the card serial numbers below the existing num-
bers at Z and then adding other comparison functions like those at \.

When the time comes to review the logged data, simply copy the file
data.txt from the microSD card and view the data with a text editor; or
import it into a spreadsheet for further analysis. The data is laid out so that
it’s easy to read, as shown in Figure 18-6.

336 Chapter 18

Figure 18-6: Example data generated
by Project 59

Looking Ahead
In this chapter you learned how to work with time and date data via the
RTC IC. The RFID system described in Project 59 gives you the framework
you need to create your own access systems or even track when your chil-
dren arrive home. In the final two chapters, we’ll create projects that will
use the Arduino to communicate over the Internet and a cellular phone
network.

19
T H E I N T E R N E T

In this chapter you will

x� Build a web server to display data on a web page
x� Use your Arduino to send tweets on Twitter
x� Remotely control Arduino digital outputs from a web browser

In this chapter you’ll learn how to connect your Arduino to the outside
world via the Internet. By doing this, you can broadcast data from your
Arduino and remotely control your Arduino from a web browser.

What You’ll Need
To build these Internet-related projects, you will need some common hard-
ware, cable, and information.

Let’s start with the hardware. You’ll need an Ethernet shield with the
W5100 controller chip. You have two options to consider: You can use the
genuine Arduino-brand Ethernet shield, as shown in Figure 19-1, or you can
use an Arduino Uno–compatible board with integrated Ethernet hardware,
such as the Freetronics EtherTen shown in Figure 19-2. The latter is a good

338 Chapter 19

choice for new projects or those for which you want to save physical space
and money. As you can see, the EtherTen has the connectors for Arduino
shields, a USB port, an Ethernet socket, and a microSD card socket.

Figure 19-1: Arduino Ethernet shield

Figure 19-2: Freetronics EtherTen

Regardless of your choice of hardware, you’ll also need a standard
10/100 CAT5, CAT5E, or CAT6 network cable to connect your Ethernet
shield to your network router or Internet modem.

In addition, you’ll need the IP address of your network’s router gateway
or modem, which should look something like this: 192.168.0.1. You’ll also need
your computer’s IP address in the same format as your router’s IP address.

Finally, if you want to communicate with your Arduino from outside
your home or local area network, you’ll need a static, public IP address. A
static IP address is a fixed address assigned to your physical Internet con-
nection by your Internet service provider (ISP). Your Internet connection

The Internet 339

may not have a static IP address by default; contact your ISP to have this
activated if necessary. If your ISP cannot offer a static IP or if it costs too
much, you can get one through a third-party company, such as no-ip (http://
www.noip.com/) or Dyn (http://dyn.com/dns/). They can set you up with a
web address that does not change and will divert users to your current IP
address.

Now let’s put our hardware to the test with a simple project.

Project #60: Building a Remote-Monitoring Station

In projects in previous chapters, we gathered data from sensors to measure
temperature and light. In this project, you’ll learn how to display those
values on a simple web page that you can access from almost any web-
enabled device. This project will display the values of the analog input pins
and the status of digital inputs zero to nine on a simple web page as the
basis for a remote-monitoring situation.

Using this framework, you can add sensors with analog and digital out-
puts such as temperature, light, and switch sensors and then display the sen-
sors’ status on a web page.

The Hardware
Here’s what you’ll need to create this project:

x� One USB cable
x� One network cable
x� One Arduino Uno and Ethernet shield, or one Freetronics EtherTen

The Sketch
Enter the following sketch, but don’t upload it yet:

/* Project 60 – Building a Remote-Monitoring Station
 created 18 Dec 2009 by David A. Mellis, modified 9 Apr 2012 by Tom Igoe
 modified 20 Mar 2013 by John Boxall
 */

#include <SPI.h>
#include <Ethernet.h>

X IPAddress ip(xxx,xxx,xxx,xxx); // Replace this with your project's IP address
Y byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };

EthernetServer server(80);

void setup()
{
 // Start the Ethernet connection and server
 Ethernet.begin(mac, ip);
 server.begin();

340 Chapter 19

 for (int z=0; z<10; z++)
 {
 pinMode(z, INPUT); // set digital pins 0 to 9 to inputs
 }
}

void loop()
{
 // listen for incoming clients (incoming web page request connections)
 EthernetClient client = server.available();
 if (client) {
 // an http request ends with a blank line
 boolean currentLineIsBlank = true;
 while (client.connected()) {
 if (client.available()) {
 char c = client.read();
 if (c == '\n' && currentLineIsBlank) {
 client.println("HTTP/1.1 200 OK");
 client.println("Content-Type: text/html");
 client.println("Connection: close");
 client.println();
 client.println("<!DOCTYPE HTML>");
 client.println("<html>");
 // add a meta refresh tag, so the browser pulls again every 5 sec:

Z client.println("<meta http-equiv=\"refresh\" content=\"5\">");
 // output the value of each analog input pin onto the web page
 for (int analogChannel = 0; analogChannel < 6; analogChannel++) {
 int sensorReading = analogRead(analogChannel);

[client.print("analog input ");
 client.print(analogChannel);
 client.print(" is ");
 client.print(sensorReading);
 client.println("
");
 }
 // output the value of digital pins 0 to 9 onto the web page
 for (int digitalChannel = 0; digitalChannel < 10; digitalChannel++)
{
 boolean pinStatus = digitalRead(digitalChannel);
 client.print("digital pin ");
 client.print(digitalChannel);
 client.print(" is ");
 client.print(pinStatus);
 client.println("
");
 }
 client.println("</html>");
 break;
 }
 if (c == '\n') {
 // you're starting a new line
 currentLineIsBlank = true;
 }

The Internet 341

 else if (c != '\r') {
 // you've gotten a character on the current line
 currentLineIsBlank = false;
 }
 }
 }
 // give the web browser time to receive the data
 delay(1);
 // close the connection:
 client.stop();
 }
}

We’ll discuss this sketch in more detail a bit later. First, before upload-
ing the sketch, you’ll need to enter an IP address for your Ethernet shield so
that it can be found on your local network or modem. You can determine
the first three parts of the address by checking your router’s IP address.
For example, if your router’s address is 192.168.0.1, change the last digit to
something random and different from that of other devices on your net-
work, using a number between 1 and 254 that isn’t already in use on your
network. Enter this at X in the sketch, like so:

IPAddress ip(192, 168, 0, 69); // Ethernet shield's IP address

Once you’ve made that change, save
and upload your sketch. Next, insert
the Ethernet shield into your Arduino if
required, connect the network cable into
your router or modem and the Ethernet
connector, and power on your Arduino
board.

Wait about 20 seconds, and then
using a web browser on any device or
computer on your network, enter the IP
address from X. If you see something like
Figure 19-3, the framework of your moni-
toring station is working correctly.

Troubleshooting
If this project doesn’t work for you,
try the following:

x� Check that the IP address is set correctly in the sketch at X.
x� Check that the sketch is correct and uploaded to your Arduino.
x� Double-check the local network. You might check to see if a connected

computer can access the Internet. If so, check that the Arduino board
has power and is connected to the router or modem.

Figure 19-3: Values of the pins mon-
itored by our station shown as a
web page on any web-connected
device with a web browser

342 Chapter 19

x� If you’re accessing the project web page from a smartphone, make sure
your smartphone is accessing your local Wi-Fi network and not the cell
phone company’s cellular network.

x� If none of the Ethernet shield’s LEDs are blinking when the Arduino
has power and the Ethernet cable is connected to the shield and router
or modem, try another patch lead.

How It Works
If and when your monitoring station is working, you can return to the most
important parts of the sketch. The code from the beginning until Z is
required because it activates the Ethernet hardware, loads the necessary
libraries, and starts the Ethernet hardware in void setup. Prior to Z, the
client.print statements are where the sketch sets up the web page to allow
it to be read by the web browser. From Z on, you can use the functions
client.print and client.println to display information on the web page as
you would with the Serial Monitor. For example, the following code is used
to display the first six lines of the web page shown in Figure 19-3.

client.print("analog input ");
client.print(analogChannel);
client.print(" is ");
client.print(sensorReading);

At [in the sketch, you see an example of writing text and the con-
tents of a variable to the web page. Here you can use HTML to control
the look of your displayed web page, as long as you don’t overtax your
Arduino’s memory. In other words, you can use as much HTML code as
you like until you reach the maximum sketch size, which is dictated by the
amount of memory in your Arduino board. (The sizes for each board type
are described in Table 11-2 on page 218.)

One thing to notice is the MAC address that networks can use to detect
individual pieces of hardware connected to the network. Each piece of
hardware on a network has a unique MAC address, which can be changed
by altering one of the hexadecimal values at Y. If two or more Arduino-based
projects are using one network, you must enter a different MAC address for
each device at Y.

Finally, if you want to view your web page from a device that is not
connected to your local network, such as a tablet or phone using a cellular
connection, then you’ll need to use a technique called port forwarding in
your network router or modem, with the public IP set up from an organiza-
tion such as no-ip (http://www.no-ip.com/) or Dyn (http://dyn.com/dns/). Port
forwarding is often unique to the make and model of your router, so do an
Internet search for router port forwarding or visit a tutorial site such as http://
www.wikihow.com/Port-Forward/ for more information.

Now that you know how to broadcast text and variables over a web page,
let’s use the Arduino to tweet.

The Internet 343

Project #61: Creating an Arduino Tweeter

In this project, you’ll learn how to make your Arduino send tweets through
Twitter. You can receive all sorts of information that can be generated by
a sketch from any device that can access Twitter. If, for example, you want
hourly temperature updates from home while you’re abroad or even notifi-
cations when the kids come home, this can offer an inexpensive solution.

Your Arduino will need its own Twitter account, so do the following:

1. Visit http://twitter.com/ and create your Arduino’s Twitter account. Make
note of the username and password.

2. Get a “token” from the third-party handler website http://arduino-tweet
.appspot.com/, which creates a bridge between your Arduino and the
Twitter service. You’ll need to follow only step 1 on this site.

3. Copy and paste the token (along with your Arduino’s new Twitter
account details) into a text file on your computer.

4. Download and install the Twitter Arduino library from http://playground
.arduino.cc/Code/TwitterLibrary/.

The Hardware
Here’s what you’ll need to create this project:

x� One USB cable
x� One network cable
x� One Arduino Uno and Ethernet shield, or one Freetronics EtherTen

The Sketch
Enter the following sketch, but don’t upload it yet:

// Project 61 - Creating an Arduino Tweeter
#include <SPI.h>
#include <Ethernet.h>
#include <Twitter.h>

X byte ip[] = { xxx,xxx,xxx,xxx };
Y byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
Z Twitter twitter("token");

[char msg[] = "I'm alive!"; // message to tweet

void setup()
{
 delay(30000);
 Ethernet.begin(mac, ip);
 Serial.begin(9600);
}

344 Chapter 19

void loop()
{
 Serial.println("connecting ...");
 if (twitter.post(msg)) {
 int status = twitter.wait();

\ if (status == 200) {
 Serial.println("OK.");
 } else {
 Serial.print("failed : code ");
 Serial.println(status);
 }
 } else {
 Serial.println("connection failed.");
 }
 do {} while (1);
}

As with Project 60, insert the IP address at X and modify the MAC
address if necessary at Y. Then insert the Twitter token between the double
quotes at Z. Finally, insert the text that you want to tweet at [. Now upload
the sketch and connect your hardware to the network. (Don’t forget to follow
your Arduino’s Twitter account with your own account!) After a minute or
so, visit your Twitter page and the message should be displayed, as shown in
Figure 19-4.

Figure 19-4: Your Arduino’s tweet

When you’re creating your Arduino tweeter, keep in mind that you
can send no more than one tweet per minute and that each message must
be unique. (These are Twitter’s rules.) When sending tweets, Twitter
also replies with a status code. The sketch will receive and display this in
the Serial Monitor using the code at \, an example of which is shown in
Figure 19-5. If you receive a “403” message like this, either your token is
incorrect or you’re sending tweets too quickly. (For a complete list of Twitter
error codes, see http://dev.twitter.com/docs/error-codes-responses/.)

Controlling Your Arduino from the Web
You can control your Arduino from a web browser in several different ways.
After doing some research, I’ve found a method that is reliable, secure, and
free: Teleduino.

The Internet 345

Teleduino is a free service created
by New Zealand Arduino enthusiast
Nathan Kennedy. It’s a simple yet
powerful tool for interacting with an
Arduino over the Internet. It doesn’t
require any special or customized
Arduino sketches; instead, you simply
enter a special URL into a web browser
to control the Arduino. You can use
Teleduino to control digital output
pins and servos, or to send I2C com-
mands, and more features are being
added all the time. In Project 62, you’ll learn how to configure Teleduino
and remotely control digital outputs from a web-enabled device.

N O T E Teleduino works only with the Arduino Uno and compatible boards that use the
ATmega328 microcontroller.

Project #62: Setting Up a Remote Control for Your Arduino

Before starting your first Teleduino project, you must register with the
Teleduino service and obtain a unique key to identify your Arduino. To
do so, visit https://www.teleduino.org/tools/request-key/ and enter the required
information. You should receive an email with your key, which will look
something like this: 187654321Z9AEFF952ABCDEF8534B2BBF.

Next, convert your key into an array variable by visiting https://www
.teleduino.org/tools/arduino-sketch-key/. Enter your key, and the page should
return an array similar to that shown in Figure 19-6.

Figure 19-6: A Teleduino key as an array

Each key is unique to a single Arduino, but you can get more keys if you
want to run more than one Teleduino project at a time.

The Hardware
Here’s what you’ll need to create this project:

x� One USB cable
x� One network cable
x� One Arduino Uno and Ethernet shield, or one Freetronics EtherTen
x� One 560 : resistor (R1)

Figure 19-5: Results of tweeting too
quickly

346 Chapter 19

x� One breadboard
x� One LED of any color

Assemble your hardware and connect an LED to digital pin 8, as shown
in Figure 19-7.

(RST)

(AREF)

(A0)

(A1)

(A2)

(A3)

(A4)

(A5)

(3V3) (5V) (Vin)

Analog Input

MOSI

SS

(D9)

(D8)

(D7)

(D6)

(D5)

SS

(D3) PWM

TX

RX

PWM

PWM

PWM

(D2)

(D1)

SCK

MISO

(D0)

Di
gi

ta
l I

np
ut

/O
ut

pu
t

Power

Arduino
Ethernet
Shield

(GND)

R1
560Ω

LED1

Figure 19-7: Schematic for Project 62

The Sketch
Teleduino projects use only one sketch, which is included with the Teleduino
library. Here’s how to access the sketch:

1. Download and install the Teleduino library from https://www.teleduino.org/
downloads/.

2. Restart the Arduino IDE and select File�Examples�Teleduino328�
TeleduinoEthernetClientProxy.

3. You should now see the Teleduino sketch. Before uploading it to your
Arduino, replace the default key with your key array. The variable
you need to replace should be on line 36 of the sketch. Once you’ve
replaced it, save the sketch, and then upload it to your Arduino.

The Internet 347

Now connect your hardware to the network and watch the LED. After
a minute or so, it should blink a few times and then rest. The number of
blinks represents the status of the Teleduino service, as shown in Table 19-1.

Table 19-1: Teleduino Status Blink Code

Number of blinks Message

1 Initializing
2 Starting network connection
3 Connecting to the Teleduino server
4 Authentication successful
5 Session already exists
6 Invalid or unauthorized key
10 Connection dropped

If you see five blinks, then another Arduino is already programmed with
your key and connected to the Teleduino server. At 10 blinks, you should
check your hardware and Internet connections. Once the Arduino has
connected, it should blink once every 5 seconds or so. Because the status
LED is controlled by digital pin 8, you can’t use that pin for any other pur-
pose while you’re using Teleduino.

Controlling Your Arduino Remotely
To control your Teleduino remotely, you can use any device with a web
browser. The command to control the Arduino is sent by entering a URL
that you create: http://us01.proxy.teleduino.org/api/1.0/328.php?k=<YOURKEY>
&r=setDigitalOutput&pin=<X>&output=<S>.

You’ll need to change three parameters in the URL: First, replace
<YOURKEY> with the long alphanumeric key you received from the Teleduino
site. Next, replace <X> with the digital pin number you want to control.
Third, change the <S> to 0 for LOW or 1 for HIGH to alter the digital
output. For example, to turn digital pin 7 to HIGH, you would enter: http://
us01.proxy.teleduino.org/api/1.0/328.php?k=<YOURKEY>&r=setDigitalOutput&
pin=7&output=1.

After the command succeeds, you should see something like the follow-
ing in the web browser:

{"status":200,"message":"OK","response"
{"result":0,"time":0.22814512252808,"values":[]}}

If the command fails, you should see an error message like this:

{"status":403,"message":"Key is offline or invalid.","response":[]}

348 Chapter 19

You can send commands to change the digital pins HIGH or LOW by
modifying the URL. After you have created the URLs for your project, book-
mark them in your browser or create a local web page with the required
links as buttons. For example, you might have a URL bookmarked to set
digital pin 7 to HIGH and another bookmarked to set it back to LOW.

In some situations, the status of your Arduino outputs could be criti-
cal. As a fail-safe in case your Arduino resets itself due to a power outage or
other interruption, set the default state for the digital pins. With your proj-
ect connected to the Teleduino service, visit https://www.teleduino.org/tools/
manage-presets/. After entering your unique key, you should see a screen of
options that allow you to select the mode and value for the digital pins, as
shown in Figure 19-8.

Figure 19-8: Default pin status setup page

Looking Ahead
Along with easily monitoring your Arduino over the Internet and having
it send tweets on Twitter, you can control your Arduino projects over the
Internet without creating any complex sketches, having much networking
knowledge, or incurring monthly expenses. By using remote control over
the Web, you can control the Arduino from almost anywhere and extend the
reach of your Arduino’s ability to send data. The three projects in this chap-
ter provide a framework with which you can build upon and design your
own remote control projects.

The next chapter, which is the last one in the book, shows you how to
make your Arduino send and receive commands over a cellular network
connection.

20
C E L L U L A R C O M M U N I C A T I O N S

In this chapter you will

x� Have your Arduino dial a telephone number when an event occurs
x� Send a text message to a cell phone using the Arduino
x� Control devices connected to an Arduino via text message from a

cell phone

You can connect your Arduino projects to a cell phone network to allow
simple communication between your Arduino and a cellular or landline
phone. With a little imagination, you can come up with many uses for this
type of communication, including some of the projects included in this
chapter.

Be sure to review this chapter before you purchase any hardware,
because the success of the projects will depend on your cellular network.
Your network must be able to

x� Operate at GSM 850 MHz, GSM 900 MHz, DCS 1800 MHz, or PCS
1900 MHz

x� Allow the use of devices not supplied by the network provider

350 Chapter 20

Cell networks operating in the European Union, Australia, and New
Zealand can usually accommodate these requirements. If you’re in the
United States and Canada, call your cell provider to ensure that these
requirements can be met before you commit to the hardware.

To make use of these projects, you might consider selecting either a
prepaid calling plan or a plan that offers a lot of included text messages,
in case an error in your sketch causes the project to send out several SMS
(Short Message Service) text messages. Also, make sure the requirement to
enter a PIN to use the SIM card is turned off. (You should be able to do
this easily by inserting the SIM card in a regular cell phone and changing
the setting in the security menu.)

The Hardware
Because of hardware restrictions, the projects in this chapter will function
only with an Arduino Uno or compatible board (that means no Arduino
Mega boards). All the projects use a common hardware configuration, so
we’ll set that up first.

You’ll need specific hardware to complete the projects in this chapter,
starting with an SM5100 GSM shield and antenna, shown in Figure 20-1.
This shield is available from SparkFun and its distributors. (Look for shield
part number CEL-09607, stackable header set PRT-10007, and antenna part
number CEL-00675.)

Figure 20-1: GSM shield with antenna attached

Cellular Communications 351

You’ll also need a power shield and supply. The GSM shield draws up to
2 A of current (more than is available from the Arduino) and will damage
your Arduino if it’s used without external power. An Arduino-compatible
power shield is available from DFRobot at http://www.dfrobot.com/, part num-
ber DFR0105, and shown in Figure 20-2.

Figure 20-2: DFRobot power shield

Finally, you’ll need an external power supply. This can be a DC plug
pack or wall wart power supply brick (or a large 7.2 V rechargeable battery,
solar panel/battery source, 12 V battery, or similar, as long as it doesn’t
exceed 35 V DC) that can offer up to 2 A of current.

Preparing the Power Shield
Prepare the power shield, and (this is important) set its output voltage for use
before attaching it to any other parts. To do this, first remove the jumpers over
the top-right and bottom-right header pins (circled on the right side of
Figure 20-2). Next, ensure that the two jumpers are set horizontally across
the PWRIN pairs at the bottom-left of the shield (circled at the bottom of
Figure 20-2).

Now connect your external power supply to the PWRIN terminal block at
the bottom-left corner of the power shield. Make sure to match the posi-
tive (+) and negative (−) wires correctly. Then turn on the power, and mea-
sure the voltage at the PWROUT terminal block at the top-left of the shield
while using a small screwdriver to adjust the blue potentiometer, shown in
Figure 20-3.

352 Chapter 20

Figure 20-3: Power shield voltage
adjust potentiometer

Continue these adjustments until the voltage measured by the multi-
meter from the power shield is 5.0 V DC. When you’re done adjusting, turn
off the power supply shield.

Now you can put the pieces together:

1. Insert the SIM card into the GSM shield.
2. Plug the GSM shield into the Arduino Uno.
3. Add the power shield on top.
4. Run a small wire from the positive PWROUT terminal block on the

power shield to the 5V pin on the shield, and run another wire from
the negative PWROUT terminal block to the GND pin on the power
shield. These two wires will feed the high-capacity 5 V power from the
power shield into the Arduino.

W A R N I N G Always ensure that power is applied to the project before connecting the USB cable
between the Arduino and the computer. And always remove the USB cable before
turning off the external power to the shield.

Hardware Configuration and Testing
Now let’s configure and test the hardware by making sure that the GSM
module can communicate with the cellular network and the Arduino. After
assembling the hardware and the SIM card, enter and upload the sketch
shown in Listing 20-1.

// Listing 20-1
// Written by Ryan Owens - SparkFun CC by v3.0 3/8/10

X #include <SoftwareSerial.h> // Virtual serial port
Y SoftwareSerial cell(2,3);

char incoming_char = 0;

Cellular Communications 353

void setup()
{
 //Initialize serial ports for communication.
 Serial.begin(9600);

Z cell.begin(9600);
 Serial.println("Starting SM5100B Communication...");
}

void loop()
{
 //If a character comes in from the cellular module...
 if(cell.available() > 0)
 {
 //Get the character from the cellular serial port.
 incoming_char = cell.read();
 //Print the incoming character to the terminal.
 Serial.print(incoming_char);
 }
 //If a character is coming from the terminal to the Arduino...
 if(Serial.available() > 0)
 {
 incoming_char = Serial.read();//Get the character coming from the terminal
 cell.print(incoming_char); //Send the character to the cellular module.
 }
}

Listing 20-1: GSM shield test sketch

This sketch simply relays all the information coming from the GSM
shield to the Serial Monitor. The GSM shield has a serial connection
between it and Arduino digital pins 2 and 3 so that it won’t interfere with
the normal serial port between the Arduino and the PC, which is on
digital pins 0 and 1. We set up a SoftwareSerial virtual serial port for the
GSM shield at X, Y, and Z. (The required library is included with the
Arduino IDE.)

Once you’ve uploaded the sketch, open the Serial Monitor window
and wait about 30 seconds. You should see data similar to that shown in
Figure 20-4.

You’re looking for messages that start with +SIND: because they tell you
about the status of the GSM module and its connection with the network.
If your messages end with +SIND: 4, your shield has found and connected
to the network, and you can move on to Project 63. However, if your mes-
sages end with a +SIND: 8, change the frequency that the module uses, as
described in the next section.

354 Chapter 20

Figure 20-4: Example output from Listing 20-1

Changing the Operating Frequency
To change your module’s operating frequency, follow these steps:

1. Close the Arduino IDE and the Serial Monitor. Then load the terminal
software used for Project 48.

2. Select the same COM port used by the Arduino board, and click Connect.
3. Look up the frequency used by your cell network in Table 20-1, and

note the band number.

Table 20-1: GSM Module Operating Bands

Frequency Band

GSM 900 MHz 0
DCS 1800 MHz 1
PCS 1900 MHz 2
GSM 850 MHz 3
GSM 900 MHz and DCS 1800 MHz 4
GSM 850 MHz and GSM 900 MHz 5
GSM 850 MHz and DCS 1800 MHz 6
GSM 850 MHz and PCS 1900 MHz 7
GSM 900 MHz and PCS 1900 MHz 8
GSM 850 MHz, GSM 900 MHz, and DCS 1800 MHz 9
GSM 850 MHz, GSM 900 MHz, and PCS 1900 MHz 10

Cellular Communications 355

4. Enter the command AT+SBAND? and press ENTER. The module should reply
with the current band settings, as shown in Figure 20-5.

Figure 20-5: Example band interrogation

5. To set the GSM module to the required band, enter the command
AT+SBAND=x, where x is the band number selected from Table 20-1. The
shield should return OK, as shown in Figure 20-6.

Figure 20-6: Successful band change

6. Finally, reset the Arduino and make sure that it connects to the network
and displays +SIND: 4. Connect a jumper wire between the GND and RST
pins on the Arduino for a second to trigger a reset, and the status codes
should appear on the terminal screen, as shown in Figure 20-7.

Figure 20-7: Successfully connected to the network

356 Chapter 20

N O T E You need to change the SBAND value only once, because the setting is stored in the GSM
shield’s EEPROM. However, if you relocate and use a different cell network, you may
have to change this value.

One final test is needed: Call your GSM
shield using another telephone. If you have
outgoing caller ID activated on the phone
you’re calling from, the number should
appear in the GSM shield output, as shown
in Figure 20-8. (Note that your number will
replace the 0452280886 number used in the
figure.)

At this stage, you can be confident that
everything is working as expected. Now on
to the projects!

Project #63: Building an Arduino Dialer

By the end of this project, your Arduino will dial a telephone number when
an event occurs, as determined by your Arduino sketch. For example, if
the temperature in your storage freezer rises above a certain level or your
burglar alarm system activates, you could have the Arduino call you from a
preset number for 20 seconds and then hang up. Your phone’s caller ID will
identify the phone number as the Arduino.

The Hardware
This project uses the hardware described at the beginning of the chapter as
well as any extra circuitry you choose for your application. For demonstra-
tion purposes, we’ll use a button to trigger the call.

In addition to the hardware already discussed, here’s what you’ll need
to create this project:

x� One push button
x� One 10 k: resistor
x� One 100 nF capacitor
x� Various connecting wires
x� One breadboard

The Schematic
Connect the external circuitry, as shown in Figure 20-9.

Figure 20-8: Results of calling
the GSM shield

Cellular Communications 357

N/C

IO REF

SCL

SDA

RST

AREF

A0

A1

A2

A3

A4

A5

3V3 5V Vin

Analog Input

D11

D10

D9

D8

D7

D6

D5

D4

D3 PWM

TX

RX

PWM

PWM

PWM

PWM

PWM

D2

D1

D13

D12

D0

Di
gi

ta
l I

np
ut

/O
ut

pu
t

Power

Arduino

GND

10k0
100nF

Figure 20-9: Schematic for Project 63

The Sketch
Enter but don’t upload the following sketch:

// Project 63 - Building an Arduino Dialer

#include <SoftwareSerial.h>
SoftwareSerial cell(2,3);

void setup()
{
 pinMode(7, INPUT);
 cell.begin(9600);

X delay(30000); // give the GSM module time to initialize network location
}

Y void callSomeone()
{

358 Chapter 20

Z cell.println("ATDxxxxxxxxxx"); // dial the phone number xxxxxxxxxx
 // change xxxxxxxxxx to your desired phone number (with area code)
 delay(20000); // wait 20 seconds.
 cell.println("ATH"); // end call
 delay(60000); // wait 60 seconds for GSM module
}

void loop()
{
 if (digitalRead(7) == HIGH)
 {

[callSomeone();
 }
}

How It Works
The module is activated in void setup, and at X we give it some time to locate
and register to the network. For our “event,” the Arduino monitors the
button connected to digital pin 7. When this button is pressed, the function
callSomeone is run at Y. At Z, the sketch sends the command to dial a tele-
phone number.

You’ll replace xxxxxxxxxx with the number you want your Arduino
to call. Use the same dialing method that you’d use from your mobile
phone. For example, if you wanted the Arduino to call 212.555.1212,
you’d add this:

cell.println("ATD2125551212");

After you have entered the phone number, you can upload the sketch,
wait a minute, and then test it by pressing the button. It’s very easy to inte-
grate the dialing function into an existing sketch, because it’s simply called
when required at [. From here, it’s up to you to find a reason for your
Arduino to dial a phone number.

Now let’s drag your Arduino into the 21st century by sending a text
message.

Project #64: Building an Arduino Texter

In this project, the Arduino will send a text message to another cell phone
when an event occurs. To simplify the code, we’ll use the SerialGSM Arduino
library, available from https://github.com/meirm/SerialGSM/. After you’ve
installed the library, restart the Arduino IDE.

The hardware you’ll need for this project is identical to that for
Project 63.

Cellular Communications 359

The Sketch
Enter the following sketch into the Arduino IDE, but don’t upload it yet:

// Project 64 - Building an Arduino Texter

#include <SerialGSM.h>
#include <SoftwareSerial.h>

X SerialGSM cell(2,3);

void setup()
{
 pinMode(7, INPUT);
 delay(30000); // wait for the GSM module
 cell.begin(9600);
}

void textSomeone()
{
 cell.Verbose(true); // used for debugging
 cell.Boot();
 cell.FwdSMS2Serial();

Y cell.Rcpt("+xxxxxxxxxxx"); // replace xxxxxxxxxxx with the
 // recipient's cell number

Z cell.Message("This is the contents of a text message");
 cell.SendSMS();
}

void loop()
{

[if (digitalRead(7) == HIGH)
 {
 textSomeone();
 }

 if (cell.ReceiveSMS())
 {
 Serial.println(cell.Message());
 cell.DeleteAllSMS();
 }
}

How It Works
The GSM shield is set up as normal at X and in void setup(). Button presses
are detected at [, and the function textSomeone is called. This simple func-
tion sends a text message to the cellular phone number stored at Y.

Before uploading the sketch, replace xxxxxxxxxxx with the recipient’s
cellular phone number in international format: the country code, the area
code, and the number, without any spaces or brackets. For example, to send a
text to 212.555.1212 in the United States, you would store +12125551212.

360 Chapter 20

The text message to be sent is stored at Z. (Note that the maximum
length for a message is 160 characters.)

After you have stored a sample text message and a destination number,
upload the sketch, wait 30 seconds, and then press the button. In a moment,
the message should arrive on the destination phone, as shown in Figure 20-10.

Figure 20-10: Sample text message being received

Project 64 can be integrated quite easily into other sketches, and vari-
ous text messages could be sent by comparing data against a parameter
with a switch-case function.

N O T E Remember that the cost of text messages can add up quickly, so when you’re experi-
menting, be sure that you’re using an unlimited or prepaid calling plan.

Project #65: Setting Up an SMS Remote Control

In this project you’ll control the digital output pins on your Arduino by
sending a text message from your cell phone. You should be able to use
your existing knowledge to add various devices to control. We’ll allow for
four separate digital outputs, but you can control more or less as required.

To turn on or off four digital outputs (pins 10 through 13 in this
example), you’d send a text message to your Arduino in the following for-
mat: #axbxcxdx, replacing x with either a 0 for off or a 1 for on. For example,
to turn on all four outputs, you’d send #a1b1c1d1.

The Hardware
This project uses the hardware described at the start of the chapter, plus
any extra circuitry you choose. We’ll use four LEDs to indicate the status of
the digital outputs being controlled. Therefore, the following extra hard-
ware is required:

x� Four LEDs
x� Four 560 : resistors
x� Various connecting wires
x� One breadboard

Cellular Communications 361

The Schematic
Connect the external circuitry, as shown in Figure 20-11.

N/C

IO REF

SCL

SDA

RST

AREF

A0

A1

A2

A3

A4

A5

3V3 5V Vin

Analog Input

D11

D10

D9

D8

D7

D6

D5

D4

D3 PWM

TX

RX

PWM

PWM

PWM

PWM

PWM

D2

D1

D13

D12

D0

Di
gi

ta
l I

np
ut

/O
ut

pu
t

Power

Arduino

GND

R1
560Ω

R3
560Ω

R4
560Ω

R2
560Ω

LED1LED4 LED3 LED2

Figure 20-11: Circuitry for Project 65

The Sketch
Enter and upload the following sketch:

// Project 65 - Setting Up an SMS Remote Control

#include <SoftwareSerial.h>
SoftwareSerial cell(2,3);
char inchar;

void setup()
{
 // set up digital output pins to control
 pinMode(10, OUTPUT);
 pinMode(11, OUTPUT);
 pinMode(12, OUTPUT);
 pinMode(13, OUTPUT);

362 Chapter 20

 digitalWrite(10, LOW); // default state for I/O pins at power-up or reset,
 digitalWrite(11, LOW); // change as you wish.
 digitalWrite(12, LOW);
 digitalWrite(13, LOW);

 //Initialize the GSM module serial port for communication.
 cell.begin(9600);
 delay(30000);

X cell.println("AT+CMGF=1");
 delay(200);

Y cell.println("AT+CNMI=3,3,0,0");
 delay(200);
}

void loop()
{
 // If a character comes in from the cellular module...

Z if(cell.available() > 0)
 {
 inchar = cell.read();

[if (inchar == '#') // the start of our command
 {
 delay(10);
 inchar = cell.read();

\ if (inchar == 'a')
 {
 delay(10);
 inchar = cell.read();
 if (inchar == '0')
 {
 digitalWrite(10, LOW);
 }
 else if (inchar == '1')
 {
 digitalWrite(10, HIGH);
 }
 delay(10);
 inchar = cell.read();
 if (inchar == 'b')
 {
 inchar = cell.read();
 if (inchar == '0')
 {
 digitalWrite(11, LOW);
 }
 else if (inchar == '1')
 {
 digitalWrite(11, HIGH);
 }
 delay(10);
 inchar = cell.read();
 if (inchar == 'c')

Cellular Communications 363

 {
 inchar = cell.read();
 if (inchar == '0')
 {
 digitalWrite(12, LOW);
 }
 else if (inchar == '1')
 {
 digitalWrite(12, HIGH);
 }
 delay(10);
 inchar = cell.read();
 if (inchar == 'd')
 {
 delay(10);
 inchar = cell.read();
 if (inchar == '0')
 {
 digitalWrite(13, LOW);
 }
 else if (inchar == '1')
 {
 digitalWrite(13, HIGH);
 }
 delay(10);
 }
 }
 cell.println("AT+CMGD=1,4"); // delete all SMS
 }
 }
 }
 }
}

How It Works
In this project the Arduino monitors every text character sent from the
GSM module. Thus, at X we tell the GSM shield to convert incoming
SMS messages to text and send the contents to the virtual serial port at Y.
Next, the Arduino simply waits for a text message to come from the GSM
shield at Z.

Because the commands sent from the cell phone and passed by the
GSM module to control pins on the Arduino start with a #, the sketch waits
for a hash mark (#) to appear in the text message at [. At \, the first out-
put parameter a is checked—if it is followed by a 0 or 1, the pin is turned
off or on, respectively. The process repeats for the next three outputs con-
trolled by b, c, and d.

Imagine how easy it would be to use this project to create a remote con-
trol for all manner of things, such as lights, pumps, alarms, and more.

364 Chapter 20

Looking Ahead
With the three projects in this chapter, you’ve created a great framework on
which to build your own projects that can communicate over a cell network.
You’re limited only by your imagination—for example, you could receive a
text message if your basement floods or turn on your air conditioner from
your cell phone. Once again, remember to take heed of network charges
before setting your projects free.

At this point, after having read about (and hopefully built) the
65 projects in this book, you should have the understanding, knowledge,
and confidence you need to create your own Arduino-based projects. You
know the basic building blocks used to create many projects, and I’m sure
you will be able to apply the technology to solve all sorts of problems and
have fun at the same time.

This is only the beginning. You can find many more forms of hardware
to work with, and with some thought and planning, you can work with them
all. You’ll find a huge community of Arduino users on the Internet (in such
places as the Arduino forum at http://arduino.cc/forum/) and even at a local
hackerspace or club.

So don’t just sit there—make something!

I N D E X

Symbols & Numbers
&, 139
&&, 73
*, 84
*/, 27
==, 71
!, 73
!=, 71
/, 84
/*, 27
//, 27
>, 84
>=, 84
#define, 70
#include, 149
-, 83
<, 84
<=, 84
%, 133
+, 83
|, 139–140
||, 73
1N4004 diode, 51, 232
24LC512. See EEPROM
433 MHz receiver shield, 275
7-segment LED displays, 126–128

controlling with shift registers,
127–130

schematic symbol, 127
74HC595. See shift registers
7805 voltage regulator, 209

schematic symbol, 209

A
amperes, 35
analogRead(), 80
analogReference(), 85–86
analogWrite(), 48–49
and, 73
Arduino, 1

board types, 217–224
libraries. See libraries
microcontroller specifications,

217–218
ATmega2560, 218
ATmega328P-PU, 218
ATmega328P SMD, 218
SAM3X8E, 218

shields. See shields

sketches
adding comments to, 27
creating your first, 27
uploading, 30
verifying, 30

suppliers, 6
Arduino Due, 223–224

specifications, 218
Arduino LilyPad, 221–222
Arduino Mega2560, 222

specifications, 218
Arduino Nano, 221
Arduino Uno, 20

analog sockets, 22
boards compatible with, 219–220
DC socket, 20
digital I/O sockets, 22
onboard LED, 22
power connector, 20
power sockets, 22
reset button, 23
schematic symbol, 57

AREF pin. See reference voltage
arithmetic, 83–84
arrays

defining, 124
writing to and reading from, 125–126

ATmega2560 specifications, 218
ATmega328P-PU, 21, 210

Arduino equivalent pinouts, 213
pin labels, 214
schematic symbol, 210
specifications, 218
uploading sketches to, 214–217

microcontroller swap method,
214–215

using existing Arduino board,
215–216

using FTDI cable, 216–217
ATmega328 SMD, specifications, 218
attachInterrupt(), 185

B
battery tester, 80–83
BC548 transistor, 50
binary numbers, 116

displaying with LEDs, 119–121
game, 122–124

binary to base-10 conversion, 116–117

366 Index

bitwise arithmetic, 139–141
AND, 139
bitshift left and right, 140–141
NOT, 140
OR, 139–140
XOR, 140

blinking
an LED, 29–30
a wave pattern, 43

Boarduino, 220
Boolean variables, 72
bootloader, 192
breadboard Arduino, 208–217

circuit schematic, 211
buttons. See push buttons
buzzers. See piezoelectric buzzers
byte variables, 117

C
capacitors, 60–62

ceramic, 61
schematic symbol, 61

electrolytic, 62
schematic symbol, 62

measuring capacity of, 60–61
reading values of, 61

cellular communications
controlling Arduino via text message,

360–363
making calls from Arduino, 356–358
SerialGSM library, 358
sending text messages from Arduino,

358–360
SM5100B GSM shield, 350

changing operating frequency,
354–355

configuring and testing, 352–353
suitable antenna, 350
suitable power supply, 351
supported GSM network

frequencies, 349
client.print(), 342
client.println(), 342
clock. See real-time clock
collision detection

with infrared sensors, 249–251
with ultrasonic sensors, 251–256

comments, 27
comparison operators, 72–73, 84

and, 73
not, 73
or, 73

compiling sketches, 30–31
constants. See #define
crystal oscillators, 209–210

schematic symbol, 210
current (electrical), 34

D
Darlington transistors, 231–232

schematic symbol, 231
data buses. See I2C bus; SPI bus
#define, 70
delay(), 29
delayMicroseconds(), 252
dice, 113–115
digital clock. See real-time clock
digital inputs, 63

activating, 70
reading, 70

digital outputs
activating, 28
maximum current, 49
pulse-width modulation, 48

digital rheostats, 318–320
digitalWrite(), 29
diodes, 50–51

schematic symbol, 57
displaying binary numbers, 119
do while, 105–106
DS3232, 321. See also real-time clock

E
EEPROM, 218, 309

external, 309
internal Arduino, 301–303
Microchip 24LC512, 309

EEPROM.h, 302
EEPROM.read, 302
EEPROM.write, 302
electricity

current, 34
power, 35
voltage, 35

electronic components
capacitors. See capacitors
crystal oscillators, 209–210

schematic symbol, 210
Darlington transistors, 231–232

Schematic symbol, 231
digital rheostats, 318–320
diodes, 50–51

schematic symbol, 57
DS3232, 321. See also real-time clock
EEPROM. See EEPROM
infrared receivers, 286
LCDs. See liquid crystal displays

(LCDs)
LEDs. See light-emitting diodes (LEDs)
microswitches, 243–246

schematic symbol, 244
motors, 231–235

demonstration circuit, 232–235
stall current, 231

Index 367

numeric keypad, 187–193
wiring to Arduino, 188

piezoelectric buzzers, 87
schematic symbol, 88

port expanders. See Microchip
Technology MCP23017

potentiometer. See variable resistors
push buttons. See push buttons
relays, 51

schematic symbol, 58
resistors. See resistors
shift registers. See shift registers
servos. See servos
temperature sensors, 90

schematic symbol, 91
touchscreens. See touchscreens
transistors, 50

schematic symbol, 58
switching higher currents with,

50, 52
trimpots, 87
variable resistors. See variable resistors

Eleven, 219
else, 71
EtherMega, 222–223
Ethernet shield, 24, 328
EtherTen, 338

F
false (Boolean value), 72
farads, 61
flash memory, 218
float variables, 84
for, 47
Freeduino, 220
Freetronics

Eleven, 219
EtherMega, 222–223
EtherTen, 338
RTC module, 322

functions, creating your own, 95–98

G
GLCD.ClearScreen(), 155
GLCD.CursorTo(), 155
GLCD.DrawCircle(), 157
GLCD.DrawHoriLine(), 157
GLCD.DrawRect(), 157
GLCD.DrawRoundRect(), 157
GLCD.DrawVertLine(), 157
GLCD.FillRect(), 157
glcd.h. See graphic LCDs
GLCD.init(), 155
GLCD.PrintNumber(), 155
GLCD.Puts(), 155
GLCD.SelectFont(), 155

GLCD.SetDot(), 157
Global Positioning System. See GPS

(Global Positioning System)
GND. See ground
Google Maps, 263
GPS (Global Positioning System)

Arduino shield, 258
displaying coordinates from, 261–263
displaying logged journeys on Google

Maps, 268–269
displaying time from, 263–265
logging position data from, 265–267
receiver, 259
showing location on Google Maps, 263
testing GPS shield, 259–261

graphic LCDs. See also liquid crystal
displays (LCDs)

Arduino library, 155
connecting to Arduino, 154
displaying graphics on, 157–160
displaying text on, 156
using with Arduino, 153–160

ground, 35
schematic symbol, 59

H
HD44780. See liquid crystal

displays (LCDs)
higher-voltage circuits, 52–53
HTML, 342

I
I2C bus

Arduino connectors, 308
device address, 308
EEPROM. See EEPROM
port expanders. See Microchip

Technology MCP23017
real-time clock. See real-time clock
receiving data, 309
transmitting data, 308
voltage warning, 308

IDE. See Integrated Development
Environment (IDE)

if, 71
#include, 149
infrared distance sensor, 246–249

connection to Arduino, 247
detecting collisions with, 249–251
example sketch, 248

infrared remote control
controlling Arduino with, 289–290
example Sony codes, 288
receiver modules, 286
testing reception, 287–288
TSOP4138, 286

368 Index

int, 46
integers, 46
Integrated Development Environment

(IDE), 25
command area, 25
icons, 25, 26
installing

on Mac OS X, 7–11
on Ubuntu Linux 9.04 and later,

15–18
on Windows 8, 7
on Windows XP and later, 15

menu items, 25, 26
message window area, 25, 26–27
text area, 25, 26
title bar, 5

interrupts, 184–186
configuring, 184

interrupts(), 185
ip(), 341
IP address, 341

K
keypad.h, 191
keypads. See numeric keypads
Knight Rider, 43
KS0066. See liquid crystal displays (LCDs)
KS0108B. See graphic LCDs; liquid crystal

displays (LCDs)

L
lcd.begin(), 150
lcd.clear(), 152
lcd.createChar(), 150
lcd.print(), 150
LCDs. See liquid crystal displays (LCDs)
lcd.setCursor(), 150
lcd.write(), 153
LEDs. See light-emitting diodes (LEDs)
libraries, 169–173

installing
in Mac OS X, 170–171
in Ubuntu Linux, 172–173
in Windows XP and later, 171–172

light-emitting diodes (LEDs), 39–40
Arduino onboard, 22
calculating current flow, 40
changing brightness with PWM,

47–49
matrix modules, 135–137

animation with, 145–146
schematic symbols, 136
using with Arduino, 141–146

schematic symbol, 57

seven-segment, 126–128
controlling with shift registers,

127–130
schematic symbol, 127

use of, 39
LilyPad Arduino, 221–222
linear, 86
liquid crystal displays (LCDs)

Arduino library, 150
character displays, 148
creating custom characters, 152–153
graphic. See graphic LCDs
using with Arduino, 149–151

LiquidCrystal LCD(), 150
logarithmic, 86
long variables, 107, 180
loop(), 28

M
MAC address, 342
Maxim DS3232. See real-time clocks
Microchip Technology MCP23017,

313–315
Microchip Technology MCP4162,

318–320
micros(), 179–181
MicroSD memory cards, 173–176

writing data to, 175–176
microswitches, 243–246

schematic symbol, 244
millis(), 179–181
MISO pin. See SPI bus
modulo, 133
MOSI pin. See SPI bus
motors, 231–235

demonstration circuit, 232–235
stall current, 231

motor shield, 238–240
connections, 239

multimeters, 38
multiplying numbers, 106–107

N
noInterrupts(), 185
not, 73, 140
numeric keypads, 187–193

wiring to Arduino, 188

O
ohms, 36
Ohm’s Law, 40
or, 73, 139–140
oscilloscopes, 64, 79–80

Index 369

P
Parallax Ping))). See ultrasonic distance

sensors
piezoelectric buzzers, 87

schematic symbol, 88
PIN. See numeric keypads
pinMode(), 28
planning your projects, 34
Pololu RP5 tank chassis, 235–242

controlling with infrared remote,
291–293

port expanders. See Microchip Technology
MCP23017

potentiometers, 86–87
power (electrical), 35
PowerSwitch Tail, 93
ProtoScrewShield, 327
pull-down resistors, 65
pulseDuration(), 252
pulse-width modulation (PWM), 47–48

demonstrating, 49
output pins, 48
using with analogWrite(), 48–49

push buttons, 63
de-bouncing circuit, 66
pin alignment of, 63
schematic symbol, 63
simple example, 65–70

PWM. See pulse-width modulation (PWM)

R
radio-frequency identification (RFID)

125 kHz RFID reader, 296
controlling Arduino with, 299–301
defined, 295
reading tags, 297–298
time-clock system, 330–336

random(), 112
random numbers, 112
randomSeed(), 112
real-time clock

connecting to Arduino, 322
displaying time with, 322–326
reading the time from, 326
setting the time, 325

reference voltage, 84–86
external, 85
internal, 86

relays, 51
schematic symbol, 58

repeating functions, 46
resistors, 35–37

color bands, 36
power rating, 38
pull-down, 65
reading resistor values, 36

schematic symbol, 57
variable, 86–87

RF data modules
Arduino library, 272
example schematics, 273–274
wireless remote control with, 272–277

RFID. See radio-frequency identification
(RFID)

RTC module, 322

S
safety warning, 18
SAM3X8E, specifications, 218
schematic diagrams, 56
SCK pin. See SPI bus
SCL pin. See I2C bus
SDA pin. See I2C bus
Serial.available(), 107
Serial.begin(), 102
serial buffer, 106
Serial.flush(), 107
SerialGSM.h, 358
serial monitor, 102–103

debugging with, 105
displaying text and data in, 102–103
sending data from serial monitor to

Arduino, 106–107
Serial.print(), 102
Serial.println(), 103
servo, 228

.attach(), 228

.write(), 228
servo.h, 227
servos, 226–230

connecting to an Arduino, 227
example project schematic, 229
required Arduino functions, 227–228
selecting an appropriate, 226

setup(), 28
shields, 23

Ethernet, 24, 328
microSD card, 163
numeric display/temperature, 24
prototyping, 164

creating your own, 165–169
shiftOut(), 121
shift registers

74HC595, 118
clock, 118–119
data, 118–119
latch, 118–119
schematic symbol, 119

sketches
adding comments to, 27
creating your first, 27
uploading, 30
verifying, 30

370 Index

SoftwareSerial.h, 353
soldering, 167
soldering iron, 167
solderless breadboard, 41
SPI.begin(), 317
SPI bus, 315

Arduino connectors, 316
digital rheostat, 318
receiving data, 309
transmitting data, 308
typical device connection, 316, 317
voltage warning, 308

SPI.h, 316
SPI.setBitOrder(), 317
SPI.transfer(), 317
SRAM, 218
SS pin. See SPI bus
stopwatch, 181–183
suppliers, 6
switch bounce, 64
switch... case, 190

T
tank chassis See Pololu RP5 tank chassis
tank robot, 235–242
Teleduino, 344

blink codes, 347
controlling Arduino with, 345–348
default pin status setup, 348
key, 345
messages from, 347
registering with, 345

temperature logging, 177–179
temperature sensor, 90
terminal emulator software, 280
then, 71
thermometer

analog, 228–230
digital, 134–135
monitor, 157–160
quick-read, 90–92, 99–101

time. See real-time clock
timing with Arduino, 179–183, 321
TIP120, 231–232

schematic symbol, 231
TMP36, 90. See also thermometer

schematic symbol, 91
TO-220, 209, 232
touchscreens, 196–205

breakout board, 196
connections to Arduino, 196
controlling Arduino with, 200
mapping touchscreen area, 199

traffic light simulator, 74–79
transistors, 50

schematic symbol, 58
switching higher currents with, 50, 52

trimpots, 87. See also variable resistors
true (Boolean value), 72
TSOP4138, 286
twitter, 343
twitter.h, 343
two-wire interface. See I2C bus
types of Arduino, 218

U
ultrasonic distance sensors, 251–256

connection to Arduino, 252
detecting collisions with, 254
example sketch, 252–253

unsigned long variable, 180
uploading sketches

with FTDI cable, 216–217
with the IDE, 31

V
variable resistors, 86–87
variables, 45–46

byte, 117
float, 84
integer, 46
long, 107, 180

verifying sketches, 30–31
void loop(), 28–29
void setup(), 28
virtual serial port, 353
virtualwire.h, 274
voltage (electrical), 35
volts, 35

W
watts, 35
web server, 339
while, 105
Wire.begin(), 308
Wire.beginTransmission(), 309
Wire.endTransmission(), 309
wire.h, 308
wireless data. See RF data modules; XBee
Wire.read(), 309
Wire.requestFrom(), 309
Wire.write(), 308

X
XBee, 277

Arduino shield, 278
explorer board, 278
transmitting data with, 279–280
using a remote control with, 281–283

XOR, 140

THE MANGA GUIDE™
TO ELECTRICIT Y
by KAZUHIRO FUJITAKI, MATSUDA,
and TREND-PRO CO., LTD.
MARCH 2009, 224 PP., $19.95
ISBN 978-1-59327-197-8

SNIP, BURN,
SOLDER, SHRED
Seriously Geeky Stuff to Make
with Your Kids
by DAVID ERIK NELSON
NOVEMBER 2010, 360 PP., $24.95
ISBN 978-1-59327-259-3

THE LEGO® MINDSTORMS®
NX T 2.0 DISCOVERY BOOK
A Beginner’s Guide to Building and
Programming Robots
by LAURENS VALK
MAY 2010, 320 PP., $29.95
ISBN 978-1-59327-211-1

THINK LIKE A
PROGR AMMER
An Introduction to Creative
Problem Solving
by V. ANTON SPRAUL
AUGUST 2012, 256 PP., $34.95
ISBN 978-1-59327-424-5

PY THON FOR KIDS
A Playful Introduction to
Programming
by JASON R. BRIGGS
DECEMBER 2012, 344 PP., $34.95
ISBN 978-1-59327-407-8
full color

SUPER SCR ATCH
PROGR AMMING
ADVENTURE!
Learn to Program By Making
Cool Games
by THE LEAD PROJECT
AUGUST 2012, 160 PP., $24.95
ISBN 978-1-59327-409-2
full color

More no-nonsense books from no starch press

U P D A T E S
Visit http://nostarch.com/arduino/ for updates, errata, and other information.

800.420.7240 OR 415.863.9900 | SALES@NOSTARCH.COM | WWW.NOSTARCH.COM

J O H N B O X A L L

ARDUINO
WORKSHOP
ARDUINO

WORKSHOP
A H A N D S - O N I N T R O D U C T I O N

W I T H 6 5 P R O J E C T S

B
O

X
A

LL

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT ™

 “ I L I E F LAT .”

Th is book uses RepKover — a durab le b ind ing that won’t snap shut.

$29.95 ($31.95 CDN)

SHELVE IN:
HARDW

ARE/ELECTRONICS

A
R

D
U

IN
O

 W
O

R
K

S
H

O
P

A
R

D
U

IN
O

 W
O

R
K

S
H

O
P

L E A R N T H E B A S I C S ,L E A R N T H E B A S I C S ,
B U I L D T H E P R O J E C T S ,B U I L D T H E P R O J E C T S ,

C R E A T E Y O U R O W NC R E A T E Y O U R O W N

The Arduino is a cheap, flexible, open source micro-
controller platform designed to make it easy for hobbyists
to use electronics in homemade projects. With an almost

world around you.
countless ways to create devices that interact with the

unlimited range of input and output add-ons, sensors, indi-
cators, displays, motors, and more, the Arduino offers you

In Arduino Workshop, you’ll learn how these add-ons

You’ll also learn to build Arduino toys and games like:

 An electronic version of the classic six-sided die

 A binary quiz game that challenges your number
conversion skills

 A motorized remote control tank with collision detection
to keep it from crashing

Arduino Workshop will teach you the tricks and design
principles of a master craftsman. Whatever your skill level,
you’ll have fun as you learn to harness the power of the
Arduino for your own DIY projects.

reviews for years. Arduino Workshop is his first book.

A B O U T T H E A U T H O R

John Boxall (http://www.tronixstuff.com/) has been
writing Arduino tutorials, projects, and kit and accessory

 A handy tester that lets you check the voltage of any
single-cell battery

 A keypad-controlled lock that requires a secret code
to open

but quickly move on to coverage of various electronic
You’ll start off with an overview of the Arduino system

components and concepts. Hands-on projects throughout

work and how to integrate them into your own projects.

the book reinforce what you’ve learned and show you
how to apply that knowledge. As your understanding grows,
the projects increase in complexity and sophistication.

Among the book’s 65 projects are useful devices like:

on an LCD
 A digital thermometer that charts temperature changes

 A GPS logger that records data from your travels, which
can be displayed on Google Maps

	Acknowledgments
	Chapter 1: Getting Started
	The Possibilities Are Endless
	Strength in Numbers
	Parts and Accessories
	Required Software
	Mac OS X
	Windows XP and Later
	Ubuntu Linux 9.04 and Later

	Safety
	Looking Ahead

	Chapter 2: Exploring the Arduino Board and the IDE
	The Arduino Board
	Taking a Look Around the IDE
	The Command Area
	The Text Area
	The Message Window Area

	Creating Your First Sketch in the IDE
	Comments
	The Setup Function
	Controlling the Hardware
	The Loop Function
	Verifying Your Sketch
	Uploading and Running Your Sketch
	Modifying Your Sketch

	Looking Ahead

	Chapter 3: First Steps
	Planning Your Projects
	About Electricity
	Current
	Voltage
	Power

	Electronic Components
	The Resistor
	The Light-Emitting Diode
	The Solderless Breadboard

	Project #1: Creating a Blinking LED Wave
	The Algorithm
	The Hardware
	The Sketch
	The Schematic
	Running the Sketch

	Using Variables
	Project #2: Repeating with for Loops
	Varying LED Brightness with Pulse-Width Modulation
	Project #3: Demonstrating PWM
	More Electric Components
	The Transistor
	The Rectifier Diode
	The Relay

	Higher-Voltage Circuits
	Looking Ahead

	Chapter 4: Building Blocks
	Using Schematic Diagrams
	Identifying Components
	Wires in Schematics
	Dissecting a Schematic

	The Capacitor
	Measuring the Capacity of a Capacitor
	Reading Capacitor Values
	Types of Capacitors

	Digital Inputs
	Project #4: Demonstrating a Digital Input
	The Algorithm
	The Hardware
	The Schematic
	The Sketch
	Modifying Your Sketch
	Understanding the Sketch
	Creating Constants with #define
	Reading Digital Input Pins
	Making Decisions with if
	Making More Decisions with if-then-else

	Boolean Variables
	Comparison Operators
	Making Two or More Comparisons

	Project #5: Controlling Traffic
	The Goal
	The Algorithm
	The Hardware
	The Schematic
	The Sketch
	Running the Sketch

	Analog vs. Digital Signals
	Project #6: Creating a Single-Cell Battery Tester
	The Goal
	The Algorithm
	The Hardware
	The Schematic
	The Sketch

	Doing Arithmetic with an Arduino
	Float Variables
	Comparison Operators for Calculations

	Improving Analog Measurement Precision with a Reference Voltage
	Using an External Reference Voltage
	Using the Internal Reference Voltage

	The Variable Resistor
	Piezoelectric Buzzers
	Piezo Schematic

	Project #7: Trying Out a Piezo Buzzer
	Project #8: Creating a Quick-Read Thermometer
	The Goal
	The Hardware
	The Schematic
	The Sketch
	Hacking the Sketch

	Looking Ahead

	Chapter 5: Working with Functions
	Project #9: Creating a Function to Repeat an Action
	Project #10: Creating a Function to Set the Number of Blinks
	Creating a Function to Return a Value
	Project #11: Creating a Quick-Read Thermometer That Blinks the Temperature
	The Hardware
	The Schematic
	The Sketch

	Displaying Data from the Arduino in the Serial Monitor
	The Serial Monitor

	Project #12: Displaying the Temperature in the Serial Monitor
	Debugging with the Serial Monitor

	Making Decisions with while Statements
	do-while

	Sending Data from the Serial Monitor to the Arduino
	Project #13: Multiplying a Number by Two
	long Variables
	Project #14: Using long Variables
	Looking Ahead

	Chapter 6: Numbers, Varaibles, and Arithmetic
	Generating Random Numbers
	Using Ambient Current to Generate a Random Number

	Project #15: Creating an Electronic Die
	The Hardware
	The Schematic
	The Sketch
	Modifying the Sketch

	A Quick Course in Binary
	Byte Variables

	Increasing Digital Outputs with Shift Registers
	Project #16: Creating an LED Binary Number Display
	The Hardware
	Connecting the 74HC595
	The Sketch

	Project #17: Making a Binary Quiz Game
	The Algorithm
	The Sketch

	Arrays
	Defining an Array
	Referring to Values in an Array
	Writing to and Reading from Arrays

	Seven-Segment LED Displays
	Controlling the LED

	Project #18: Creating a Single-Digit Display
	The Hardware
	The Schematic
	The Sketch
	Displaying Double Digits

	Project #19: Controlling Two Seven-Segment LED Display Modules
	The Hardware
	The Schematic
	Modulo

	Project #20: Creating a Digital Thermometer
	The Hardware
	The Sketch

	LED Matrix Display Modules
	The LED Matrix Schematic
	Making the Connections

	Bitwise Arithmetic
	The Bitwise AND Operator
	The Bitwise OR Operator
	The Bitwise XOR Operator
	The Bitwise NOT Operator
	Bitshift Left and Right

	Project #21: Creating an LED Matrix
	Project #22: Creating Images on an LED Matrix
	Project #23: Displaying an Image on an LED Matrix
	Project #24: Animating an LED Matrix
	The Sketch

	Looking Ahead

	Chapter 7: Liquid Crystal Displays
	Character LCD Modules
	Using a Character LCD in a Sketch
	Displaying Text
	Displaying Variables or Numbers

	Project #25: Defining Custom Characters
	Graphic LCD Modules
	Connecting the Graphic LCD
	Using the LCD
	Controlling the Display

	Project #26: Seeing the Text Functions in Action
	Creating More Complex Display Effects

	Project #27: Creating a Temperature History Monitor
	The Algorithm
	The Hardware
	The Sketch
	The Result
	Modifying the Sketch

	Looking Ahead

	Chapter 8: Expanding Your Arduino
	Shields
	ProtoShields
	Project #28: Creating a Custom Shield with Eight LEDs
	The Hardware
	The Schematic
	The Layout of the ProtoShield Board
	The Design
	Soldering the Components
	Modifying the Custom Shield

	Expanding Sketches with Libraries
	Importing a Shield’s Libraries

	MicroSD Memory Cards
	Testing Your MicroSD Card

	Project #29: Writing Data to the Memory Card
	Project #30: Creating a Temperature-Logging Device
	The Hardware
	The Sketch

	Timing Applications with millis() and micros()
	Project #31: Creating a Stopwatch
	The Hardware
	The Schematic
	The Sketch

	Interrupts
	Interrupt Modes
	Configuring Interrupts
	Activating or Deactivating Interrupts

	Project #32: Using Interrupts
	The Sketch

	Looking Ahead

	Chapter 9: Numeric Keypads
	Using a Numeric Keypad
	Wiring a Keypad
	Programming for the Keypad
	Testing the Sketch

	Making Decisions with switch-case
	Project #33: Creating a Keypad-Controlled Lock
	The Sketch
	How It Works
	Testing the Sketch

	Looking Ahead

	Chapter 10: Accepting User Input
	Touchscreens
	Connecting the Touchscreen

	Project #34: Addressing Areas on the Touchscreen
	The Hardware
	The Sketch
	Testing the Sketch
	Mapping the Touchscreen

	Project #35: Creating a Two-Zone On/Off Touch Switch
	The Sketch
	How It Works
	Testing the Sketch

	Project #36: Creating a Three-Zone Touch Switch
	The Touchscreen Map
	The Sketch
	How It Works

	Looking Ahead

	Chapter 11: Meet the Arduino Family
	Project #37: Creating Your Own Breadboard Arduino
	The Hardware
	The Schematic
	Running a Test Sketch

	The Many Arduino Boards
	Arduino Uno
	Freetronics Eleven
	The Freeduino
	The Boarduino
	The Arduino Nano
	The Arduino LilyPad
	The Arduino Mega 2560
	The Freetronics EtherMega
	The Arduino Due

	Looking Ahead

	Chapter 12: Motors and Movement
	Making Small Motions with Servos
	Selecting a Servo
	Connecting a Servo
	Putting a Servo to Work

	Project #38: Building an Analog Thermometer
	The Hardware
	The Schematic
	The Sketch

	Using Electric Motors
	The TIP120 Darlington Transistor

	Project #39: Controlling the Motor
	The Hardware
	The Schematic
	The Sketch

	Project #40: Building and Controlling a Tank Robot
	The Hardware
	The Schematic
	The Sketch

	Sensing Collisions
	Project #41: Detecting Tank Bot Collisions with a Microswitch
	The Schematic
	The Sketch

	Infrared Distance Sensors
	Wiring It Up
	Testing the IR Distance Sensor

	Project #42: Detecting Tank Bot Collisions with
IR Distance Sensor
	Ultrasonic Distance Sensors
	Connecting the Ultrasonic Sensor
	Using the Ultrasonic Sensor
	Testing the Ultrasonic Distance Sensor

	Project #43: Detecting Tank Bot Collisions with an Ultrasonic Distance Sensor
	The Sketch

	Looking Ahead

	Chapter 13: Using GPS with Your Arduino
	What Is GPS?
	Testing the GPS Shield
	Project #44: Creating a Simple GPS Receiver
	The Hardware
	The Sketch
	Displaying the Position on the LCD

	Project #45: Creating an Accurate GPS-based Clock
	The Hardware
	The Sketch

	Project #46: Recording the Position of a Moving Object over Time
	The Hardware
	The Sketch
	Displaying Locations on a Map

	Looking Ahead

	Chapter 14: Wireless Data
	Using Low-cost Wireless Modules
	Project #47: Creating a Wireless Remote Control
	The Hardware for the Transmitter Circuit
	The Transmitter Schematic
	The Hardware for the Receiver Circuit
	The Receiver Schematic
	The Transmitter Sketch
	The Receiver Sketch

	Using XBee Wireless Data Modules for Greater Range and Faster Speed
	Project #48: Transmitting Data with an XBee
	The Sketch
	Setting Up the Computer to Receive Data

	Project #49: Building a Remote Control Thermometer
	The Hardware
	The Layout
	The Sketch
	Operation

	Looking Ahead

	Chapter 15: Infrared Remote Control
	What Is Infrared?
	Setting Up for Infrared
	The IR Receiver
	The Remote Control
	A Test Sketch
	Testing the Setup

	Project #50: Creating an IR Remote Control Arduino
	The Hardware
	The Sketch
	Expanding the Sketch

	Project #51: Creating an IR Remote Control Tank
	The Hardware
	The Sketch

	Looking Ahead

	Chapter 16: Reading RFID Tags
	Inside RFID Devices
	Testing the Hardware
	The Schematic
	Testing the Schematic

	Project #52: Creating a Simple RFID Control System
	The Sketch
	How It Works

	Storing Data in the Arduino’s Built-in EEPROM
	Reading and Writing to the EEPROM

	Project #53: Creating an RFID Control with
“Last Action” Memory
	The Sketch
	How It Works

	Looking Ahead

	Chapter 17: Data Buses
	The I2C Bus
	Project #54: Using an External EEPROM
	The Hardware
	The Schematic
	The Sketch
	The Result

	Project #55: Using a Port Expander IC
	The Hardware
	The Schematic
	The Sketch

	The SPI Bus
	Pin Connections
	Implementing the SPI
	Sending Data to an SPI Device

	Project #56: Using a Digital Rheostat
	The Hardware
	The Schematic
	The Sketch

	Looking Ahead

	Chapter 18: Real-time Clocks
	Connecting the RTC Module
	Project #57: Adding and Displaying Time and Date with an RTC
	The Hardware
	The Sketch
	How It Works

	Project #58: Creating a Simple Digital Clock
	The Hardware
	The Sketch
	How It Works and Results

	Project #59: Creating an RFID Time-Clock System
	The Hardware
	The Sketch
	How It Works

	Looking Ahead

	Chapter 19: The Internet
	What You’ll Need
	Project #60: Building a Remote-Monitoring Station
	The Hardware
	The Sketch
	Troubleshooting
	How It Works

	Project #61: Creating an Arduino Tweeter
	The Hardware
	The Sketch

	Controlling Your Arduino from the Web
	Project #62: Setting Up a Remote Control for Your Arduino
	The Hardware
	The Sketch
	Controlling Your Arduino Remotely

	Looking Ahead

	Chapter 20: Cellular Communications
	The Hardware
	Preparing the Power Shield
	Hardware Configuration and Testing
	Changing the Operating Frequency

	Project #63: Building an Arduino Dialer
	The Hardware
	The Schematic
	The Sketch
	How It Works

	Project #64: Building an Arduino Texter
	The Sketch
	How It Works

	Project #65: Setting Up an SMS Remote Control
	The Hardware
	The Schematic
	The Sketch
	How It Works

	Looking Ahead

	Index

